
socceraction
Release 1.5.1

Tom Decroos

Apr 25, 2024

DOCUMENTATION

1 Quickstart 3
1.1 Installation . 3
1.2 Loading event stream data . 3
1.3 Converting to SPADL actions . 4
1.4 Valuing actions . 5

2 Installation 7
2.1 Install Python . 7
2.2 Install socceraction . 7
2.3 Verifying . 8

3 Loading data 9
3.1 Loading data with socceraction . 9
3.2 Loading data with kloppy . 19

4 Data representation 21
4.1 SPADL . 21
4.2 Atomic-SPADL . 24

5 Valuing actions 27
5.1 General idea . 27
5.2 Implemented frameworks . 28

6 FAQ 35

7 socceraction.data 37
7.1 socceraction.data.base . 37
7.2 socceraction.data.statsbomb . 41
7.3 socceraction.data.opta . 48
7.4 socceraction.data.wyscout . 53

8 socceraction.spadl 63
8.1 Converters . 63
8.2 Schema . 65
8.3 Config . 66
8.4 Utility functions . 67

9 socceraction.xthreat 69
9.1 Model . 69
9.2 Utility functions . 72

i

10 socceraction.vaep 75
10.1 Model . 75
10.2 Utility functions . 78

11 socceraction.atomic.spadl 87
11.1 Converters . 87
11.2 Schema . 87
11.3 Config . 88
11.4 Utility functions . 89

12 socceraction.atomic.vaep 93
12.1 Model . 93
12.2 Utility functions . 94

13 Contributor guide 99
13.1 Bug reports . 99
13.2 Feature requests . 99
13.3 Documentation contributions . 99
13.4 Code contributions . 100

14 First steps 103

15 Getting help 105

16 Contributing 107

17 Research 109

Python Module Index 111

Index 113

ii

socceraction, Release 1.5.1

socceraction is a Python package for objectively quantifying the value of the individual actions performed by soccer
players using event stream data. It contains the following components:

• A set of API clients for loading event stream data from StatsBomb, Wyscout and Opta.

• Converters for each of these provider’s proprietary data format to the SPADL and atomic-SPADL formats, which
are unified and expressive languages for on-the-ball player actions.

• An implementation of the Expected Threat (xT) possession value framework.

• An implementation of the VAEP and Atomic-VAEP possession value frameworks.

DOCUMENTATION 1

https://statsbomb.com/
https://wyscout.com/
https://www.statsperform.com/opta/

socceraction, Release 1.5.1

2 DOCUMENTATION

CHAPTER

ONE

QUICKSTART

Eager to get started valuing some soccer actions? This page gives a quick introduction on how to get started.

1.1 Installation

First, make sure that socceraction is installed:

$ pip install socceraction[statsbomb]

For detailed instructions and other installation options, check out our detailed installation instructions.

1.2 Loading event stream data

First of all, you will need some data. Luckily, both StatsBomb and Wyscout provide a small freely available dataset.
The data module of socceraction makes it trivial to load these datasets as Pandas DataFrames. In this short introduction,
we will work with Statsbomb’s dataset of the 2018 World Cup.

import pandas as pd
from socceraction.data.statsbomb import StatsBombLoader

Set up the StatsBomb data loader
SBL = StatsBombLoader()

View all available competitions
df_competitions = SBL.competitions()

Create a dataframe with all games from the 2018 World Cup
df_games = SBL.games(competition_id=43, season_id=3).set_index("game_id")

Note: Keep in mind that by using the public StatsBomb data you are agreeing to their user agreement.

For each game, you can then retrieve a dataframe containing the teams, all players that participated, and all events that
were recorded in that game. Specifically, we’ll load the data from the third place play-off game between England and
Belgium.

game_id = 8657
df_teams = SBL.teams(game_id)

(continues on next page)

3

https://github.com/statsbomb/open-data
https://www.nature.com/articles/s41597-019-0247-7
https://pandas.pydata.org/docs/reference/api/pandas.DataFrame.html
https://github.com/statsbomb/open-data/blob/master/LICENSE.pdf

socceraction, Release 1.5.1

(continued from previous page)

df_players = SBL.players(game_id)
df_events = SBL.events(game_id)

1.3 Converting to SPADL actions

The event stream format is not well-suited for data analysis: some of the recorded information is irrelevant for valuing
actions, each vendor uses their own custom format and definitions, and the events are stored as unstructured JSON
objects. Therefore, socceraction uses the SPADL format for describing actions on the pitch. With the code below, you
can convert the events to SPADL actions.

import socceraction.spadl as spadl

home_team_id = df_games.at[game_id, "home_team_id"]
df_actions = spadl.statsbomb.convert_to_actions(df_events, home_team_id)

With the matplotsoccer package, you can try plotting some of these actions:

import matplotsoccer as mps

Select relevant actions
df_actions_goal = df_actions.loc[2196:2200]
Replace result, actiontype and bodypart IDs by their corresponding name
df_actions_goal = spadl.add_names(df_actions_goal)
Add team and player names
df_actions_goal = df_actions_goal.merge(df_teams).merge(df_players)
Create the plot
mps.actions(

location=df_actions_goal[["start_x", "start_y", "end_x", "end_y"]],
action_type=df_actions_goal.type_name,
team=df_actions_goal.team_name,
result=df_actions_goal.result_name == "success",
label=df_actions_goal[["time_seconds", "type_name", "player_name", "team_name"]],
labeltitle=["time", "actiontype", "player", "team"],
zoom=False

)

4 Chapter 1. Quickstart

https://github.com/TomDecroos/matplotsoccer

socceraction, Release 1.5.1

1.4 Valuing actions

We can now assign a numeric value to each of these individual actions that quantifies how much the action contributed
towards winning the game. Socceraction implements three frameworks for doing this: xT, VAEP and Atomic-Vaep. In
this quickstart guide, we will focus on the xT framework.

The expected threat or xT model overlays a 𝑀 × 𝑁 grid on the pitch in order to divide it into zones. Each zone 𝑧 is
then assigned a value 𝑥𝑇 (𝑧) that reflects how threatening teams are at that location, in terms of scoring. An example
grid is visualized below.

The code below allows you to load league-wide xT values from the 2017-18 Premier League season (the 12x8 grid
shown above). Instructions on how to train your own model can be found in the detailed documentation about xT .

import socceraction.xthreat as xthreat

url_grid = "https://karun.in/blog/data/open_xt_12x8_v1.json"
xT_model = xthreat.load_model(url_grid)

Subsequently, the model can be used to value actions that successfully move the ball between two zones by computing
the difference between the threat value on the start and end location of each action. The xT framework does not assign
a value to failed actions, shots and defensive actions such as tackles.

df_actions_ltr = spadl.play_left_to_right(df_actions, home_team_id)
df_actions["xT_value"] = xT_model.rate(df_actions_ltr)

1.4. Valuing actions 5

socceraction, Release 1.5.1

Ready for more? Check out the detailed documentation about the data representation and action value frameworks.

6 Chapter 1. Quickstart

CHAPTER

TWO

INSTALLATION

Before you can use socceraction, you’ll need to get it installed. This guide will guide you to a minimal installation
that’ll work while you walk through the introduction.

2.1 Install Python

Being a Python library, socceraction requires Python. Currently, socceraction supports Python version 3.9 – 3.11. Get
the latest version of Python at https://www.python.org/downloads/ or with your operating system’s package manager.

You can verify that Python is installed by typing python from your shell; you should see something like:

Python 3.x.y
[GCC 4.x] on linux
Type "help", "copyright", "credits" or "license" for more information.
>>>

2.2 Install socceraction

You’ve got two options to install socceraction.

2.2.1 Installing an official release with pip

This is the recommended way to install socceraction. Simply run this simple command in your terminal of choice:

$ python -m pip install socceraction

You might have to install pip first. The easiest method is to use the standalone pip installer.

7

https://www.python.org/downloads/
https://pip.pypa.io/en/latest/installing/#installing-with-get-pip-py

socceraction, Release 1.5.1

2.2.2 Installing the development version

Socceraction is actively developed on GitHub, where the code is always available. You can easily install the develop-
ment version with:

$ pip install git+https://github.com/ML-KULeuven/socceraction.git

However, to be able to make modifications in the code, you should either clone the public repository:

$ git clone git://github.com/ML-KULeuven/socceraction.git

Or, download the zipball:

$ curl -OL https://github.com/ML-KULeuven/socceraction/archive/master.zip

Once you have a copy of the source, you can embed it in your own Python package, or install it into your site-packages
easily:

$ cd socceraction
$ python -m pip install -e .

2.3 Verifying

To verify that socceraction can be seen by Python, type python from your shell. Then at the Python prompt, try to
import socceraction:

>>> import socceraction
>>> print(socceraction.__version__)

8 Chapter 2. Installation

https://github.com/ML-KULeuven/socceraction
https://github.com/ML-KULeuven/socceraction/archive/master.zip

CHAPTER

THREE

LOADING DATA

Socceraction provides API clients for various popular event stream data sources. These clients enable fetching event
streams and their corresponding metadata as Pandas DataFrames using a unified data model. Alternatively, you can
also use kloppy to load data.

3.1 Loading data with socceraction

All API clients implemented in socceraction inherit from the EventDataLoader interface. This interface provides
the following methods to retrieve data as a Pandas DataFrames with a unified data model (i.e., Schema). The
schema defines the minimal set of columns and their types that are returned by each method. Implementations of
the EventDataLoader interface may add additional columns.

Method Output schema Description
competitions() CompetitionSchema All available competitions and seasons
games(competition_id, season_id) GameSchema All available games in a season
teams(game_id) TeamSchema Both teams that participated in a game
players(game_id) PlayerSchema All players that participated in a game
events(game_id) EventSchema The event stream of a game

Currently, the following data providers are supported:

3.1.1 Loading StatsBomb data

The StatsBombLoader class provides an API client enabling you to fetch StatsBomb event stream data as Pandas
DataFrames. This document provides an overview of the available data sources and how to access them.

Setup

To be able to load StatsBomb data, you’ll first need to install a few additional dependencies which are not included in
the default installation of socceraction. You can install these additional dependencies by running:

$ pip install "socceraction[statsbomb]"

9

https://kloppy.pysport.org/
https://statsbomb.com/what-we-do/soccer-data/

socceraction, Release 1.5.1

Connecting to a data store

First, you have to create a StatsBombLoader object and configure it for the data store you want to use. The
StatsBombLoader supports loading data from the StatsBomb Open Data repository, from the official StatsBomb
API, and from local files.

Open Data repository

StatsBomb has made event stream data of certain leagues freely available for public non-commercial use at https:
//github.com/statsbomb/open-data. This open data can be accessed without the need of authentication, but its use is
subject to a user agreement. The code below shows how to setup an API client that can fetch data from the repository.

optional: suppress warning about missing authentication
import warnings
from statsbombpy.api_client import NoAuthWarning
warnings.simplefilter('ignore', NoAuthWarning)

from socceraction.data.statsbomb import StatsBombLoader

api = StatsBombLoader(getter="remote", creds=None)

Note: If you publish, share or distribute any research, analysis or insights based on this data, StatsBomb requires you
to state the data source as StatsBomb and use their logo.

StatsBomb API

API access is for paying customers only. Authentication can be done by setting environment variables named
SB_USERNAME and SB_PASSWORD to your login credentials. Alternatively, the constructor accepts an argument creds
to pass your login credentials in the format {"user": "", "passwd": ""}.

from socceraction.data.statsbomb import StatsBombLoader

set authentication credentials as environment variables
import os
os.environ["SB_USERNAME"] = "your_username"
os.environ["SB_PASSWORD"] = "your_password"
api = StatsBombLoader(getter="remote")

or provide authentication credentials as a dictionary
api = StatsBombLoader(getter="remote", creds={"user": "", "passwd": ""})

10 Chapter 3. Loading data

https://github.com/statsbomb/open-data
https://github.com/statsbomb/open-data
https://github.com/statsbomb/open-data/blob/master/LICENSE.pdf

socceraction, Release 1.5.1

Local directory

A final option is to load data from a local directory. This local directory can be specified by passing the root argument
to the constructor, specifying the path to the local data directory.

from socceraction.data.statsbomb import StatsBombLoader

api = StatsBombLoader(getter="local", root="data/statsbomb")

Note that the data should be organized in the same way as the StatsBomb Open Data repository, which corresponds to
the following file hierarchy:

root
competitions.json
events

<match_id>.json
...
...

lineups
<match_id>.json
...

matches
<competition_id>

<season_id>.json
...

...
three-sixty

<match_id>.json
...

Loading data

Next, you can load the match event stream data and metadata by calling the corresponding methods on the
StatsBombLoader object.

StatsBombLoader.competitions()

df_competitions = api.competitions()

sea-
son_id

competi-
tion_id

competi-
tion_name

coun-
try_name

competi-
tion_gender

sea-
son_name

106 43 FIFA World Cup International male 2022
30 72 Women’s World

Cup
International female 2019

3 43 FIFA World Cup International male 2018

3.1. Loading data with socceraction 11

socceraction, Release 1.5.1

StatsBombLoader.games()

df_games = api.games(competition_id=43, season_id=3)

game_idsea-
son_id

com-
peti-
tion_id

com-
peti-
tion_stage

game_daygame_datehome_team_idaway_team_idhome_scoreaway_scorevenue ref-
eree_id

8658 3 43 Final 7 2018-
07-15
17:00:00

771 785 4 2 Stadion
Luzhniki

730

8657 3 43 3rd
Place
Final

7 2018-
07-14
16:00:00

782 768 2 0 Saint-
Petersburg
Stadium

741

StatsBombLoader.teams()

df_teams = api.teams(game_id=8658)

team_id team_name
771 France
785 Croatia

StatsBombLoader.players()

df_players = api.players(game_id=8658)

game_idteam_idplayer_idplayer_name nick-
name

jer-
sey_number

is_starterstart-
ing_position_id

start-
ing_position_name

min-
utes_played

8658 771 3009 Kylian
Mbappé
Lottin

Kylian
Mbappé

10 True 12 Right Mid-
field

95

8658 785 5463 Luka Mod-
rić

10 True 13 Right Center
Midfield

95

StatsBombLoader.events()

df_events = api.events(game_id=8658)

12 Chapter 3. Loading data

socceraction, Release 1.5.1

event_idin-
dex

pe-
riod_id

times-
tamp

minutesec-
ond

type_idtype_namepos-
ses-
sion

pos-
ses-
sion_team_id

pos-
ses-
sion_team_name

play_pattern_idplay_pattern_nameteam_idteam_namedu-
ra-
tion

ex-
tra

re-
lated_events

player_idplayer_namepo-
si-
tion_id

po-
si-
tion_name

lo-
ca-
tion

un-
der_pressure

coun-
ter-
press

game_id

47638847-
fd43-
4656-
b49c-
cff64e5cfc0a

1 1 1900-
01-
01

0 0 35 Start-
ing
XI

1 771 France1 Reg-
u-
lar
Play

771 France0.0 {. . . }[] FalseFalse8658

0c04305d-
5615-
4520-
9be5-
7c232829954b

2 1 1900-
01-
01

0 0 35 Start-
ing
XI

1 771 France1 Reg-
u-
lar
Play

785 Croa-
tia

1.412{. . . }[] FalseFalse8658

c5e17439-
efe2-
480b-
9cff-
1600998674d7

3 1 1900-
01-
01

0 0 18 Half
Start

1 771 France1 Reg-
u-
lar
Play

771 France0.0 {} [‘7e1460eb-
c572-
4059-
8cd4-
cec4857f818d’]

FalseFalse8658

If 360 data snapshots are available for the game, they can be loaded by passing load_360=True to the events()
method. This will add two columns to the events dataframe: visible_area_360 and freeze_frame_360. The
former contains the visible area of the pitch in the 360 snapshot, while the latter contains the player locations in the
360 snapshot.

df_events = api.events(game_id=3788741, load_360=True)

3.1.2 Loading Wyscout data

The WyscoutLoader class provides an API client enabling you to fetch Wyscout event stream data as Pandas
DataFrames. This document provides an overview of the available data sources and how to access them.

Note: Currently, only version 2 of the Wyscout API is supported. See https://github.com/ML-KULeuven/
socceraction/issues/156 for progress on version 3 support.

3.1. Loading data with socceraction 13

https://statsbomb.com/what-we-do/soccer-data/360-2/
https://footballdata.wyscout.com/
https://github.com/ML-KULeuven/socceraction/issues/156
https://github.com/ML-KULeuven/socceraction/issues/156

socceraction, Release 1.5.1

Connecting to a data store

First, you have to create a WyscoutLoader object and configure it for the data store you want to use. The
WyscoutLoader supports loading data from the official Wyscout API and from local files. Additionally, the
PublicWyscoutLoader class can be used to load a publicly available dataset.

Wyscout API

Wyscout API access requires a separate subscription. Wyscout currently offers three different packs: a Database Pack
(match sheet data), a Stats Pack (statistics derived from match event data), and an Events Pack (raw match event data).
A subscription to the Events Pack is required to access the event stream data.

Authentication can be done by setting environment variables named WY_USERNAME and WY_PASSWORD to your login
credentials (i.e., client id and secret). Alternatively, the constructor accepts an argument creds to pass your login
credentials in the format {"user": "", "passwd": ""}.

from socceraction.data.wyscout import WyscoutLoader

set authentication credentials as environment variables
import os
os.environ["WY_USERNAME"] = "your_client_id"
os.environ["WY_PASSWORD"] = "your_secret"
api = WyscoutLoader(getter="remote")

or provide authentication credentials as a dictionary
api = WyscoutLoader(getter="remote", creds={"user": "", "passwd": ""})

Local directory

Data can also be loaded from a local directory. This local directory can be specified by passing the root argument to
the constructor, specifying the path to the local data directory.

from socceraction.data.wyscout import WyscoutLoader

ap = WyscoutLoader(getter="local", root="data/wyscout")

The loader uses the directory structure and file names to determine which files should be parsed to retrieve the re-
quested data. Therefore, the local directory should have a predefined file hierarchy. By default, it expects following file
hierarchy:

root
competitions.json
seasons_<competition_id>.json
matches_<season_id>.json
matches

events_<game_id>.json
...

If your local directory has a different file hierarchy, you can specify this custom hierarchy by passing the feeds argument
to the constructor. A wide range of file names and directory structures are supported. However, the competition, season,
and game identifiers must be included in the file names to be able to locate the corresponding files for each entity.

14 Chapter 3. Loading data

https://apidocs.wyscout.com/
https://footballdata.wyscout.com/packages/

socceraction, Release 1.5.1

from socceraction.data.wyscout import WyscoutLoader

ap = WyscoutLoader(getter="local", root="data/wyscout", feeds={
"competitions": "competitions.json",
"seasons": "seasons_{competition_id}.json",
"games": "matches_{season_id}.json",
"events": "matches/events_{game_id}.json",

}))

The {competition_id}, {season_id}, and {game_id} placeholders will be replaced by the corresponding id values
when data is retrieved.

Soccer logs dataset

As part of the “A public data set of spatio-temporal match events in soccer competitions” paper, Wyscout made an event
stream dataset available for research purposes. The dataset covers the 2017/18 season of the Spanish, Italian, English,
German, and French first division. In addition, it includes the data of the 2018 World Cup and the 2016 European
championship. The dataset is available at https://figshare.com/collections/Soccer_match_event_dataset/4415000/2.

As the format of this dataset is slightly different from the format of the official Wyscout API, a separate
PublicWyscoutLoader class is provided to load this dataset. This loader will download the dataset once and ex-
tract it to the specified root directory.

from socceraction.data.wyscout import PublicWyscoutLoader

api = PublicWyscoutLoader(root="data/wyscout")

Loading data

Next, you can load the match event stream data and metadata by calling the corresponding methods on the
WyscoutLoader object.

• WyscoutLoader.competitions()

• WyscoutLoader.games()

• WyscoutLoader.teams()

• WyscoutLoader.players()

• WyscoutLoader.events()

3.1.3 Loading Opta data

Opta’s event stream data comes in many different flavours. The OptaLoader class provides an API client enabling you
to fetch data from the following data feeds as Pandas DataFrames:

• Opta F1, F9 and F24 JSON feeds

• Opta F7 and F24 XML feeds

• StatsPerform MA1 and MA3 JSON feeds

• WhoScored.com JSON data

Currently, only loading data from local files is supported.

3.1. Loading data with socceraction 15

https://figshare.com/collections/Soccer_match_event_dataset/4415000/2
https://www.statsperform.com/opta-event-definitions/

socceraction, Release 1.5.1

Connecting to a data store

First, you have to create a OptaLoader object and configure it for the data feeds you want to use.

Generic setup

To set up a OptaLoader you have to specify the root directory, the filename hierarchy of the feeds and a parser for each
feed. For example:

from socceraction.data.opta import OptaLoader, parsers

api = OptaLoader(
root="data/opta",
feeds = {

"f7": "f7-{competition_id}-{season_id}-{game_id}.xml",
"f24": "f24-{competition_id}-{season_id}-{game_id}.xml",

}
parser={

"f7": parsers.F7XMLParser,
"f24": parsers.F24XMLParser

}
)

Since the loader uses the directory structure and file names to determine which files should be parsed, the root directory
should have a predefined file hierarchy defined in the feeds argument. A wide range of file names and directory
structures are supported. However, the competition, season, and game identifiers must be included in the file names to
be able to locate the corresponding files for each entity. For example, you might have grouped feeds by competition
and season as follows:

root
competition_<competition_id>

season_<season_id>
f7_<game_id>.xml
f24_<game_id>.xml

...
...

In this case, you can use the following feeds configuration:

feeds = {
"f7": "competition_{competition_id}/season_{season_id}/f7_{game_id}.xml",
"f24": "competition_{competition_id}/season_{season_id}/f24_{game_id}.xml",

}

Note: On Windows, the backslash character should be used as a path separator.

Furthermore, a few standard configurations are provided. These are listed below.

16 Chapter 3. Loading data

socceraction, Release 1.5.1

Opta F7 and F24 XML feeds

from socceraction.data.opta import OptaLoader

api = OptaLoader(root="data/opta", parser="xml")

The root directory should have the following structure:

root
f7-{competition_id}-{season_id}.xml
f24-{competition_id}-{season_id}-{game_id}.xml
...

Opta F1, F9 and F24 JSON feeds

from socceraction.data.opta import OptaLoader

api = OptaLoader(root="data/opta", parser="json")

The root directory should have the following structure:

root
f1-{competition_id}-{season_id}.json
f9-{competition_id}-{season_id}.json
f24-{competition_id}-{season_id}-{game_id}.json
...

StatsPerform MA1 and MA3 JSON feeds

from socceraction.data.opta import OptaLoader

api = OptaLoader(root="data/statsperform", parser="statsperform")

The root directory should have the following structure:

root
ma1-{competition_id}-{season_id}.json
ma3-{competition_id}-{season_id}-{game_id}.json
...

3.1. Loading data with socceraction 17

socceraction, Release 1.5.1

WhoScored

WhoScored.com is a popular website that provides detailed live match statistics. These statistics are compiled from
Opta’s event feed, which can be scraped from the website’s source code using a library such as soccerdata. Once you
have downloaded the raw JSON data, you can parse it using the OptaLoader with:

from socceraction.data.opta import OptaLoader

api = OptaLoader(root="data/whoscored", parser="whoscored")

The root directory should have the following structure:

root
{competition_id}-{season_id}-{game_id}.json
...

Alternatively, the soccerdata library provides a wrapper that immediately returns a OptaLoader object for a scraped
dataset.

import soccerdata as sd

Setup a scraper for the 2021/2022 Premier League season
ws = sd.WhoScored(leagues="ENG-Premier League", seasons=2021)
Scrape all games and return a OptaLoader object
api = ws.read_events(output_fmt='loader')

Warning: Scraping data from WhoScored.com violates their terms of service. Legally, scraping this data is
therefore a grey area. If you decide to use this data anyway, this is your own responsibility.

Loading data

Next, you can load the match event stream data and metadata by calling the corresponding methods on the OptaLoader
object.

• OptaLoader.competitions()

• OptaLoader.games()

• OptaLoader.teams()

• OptaLoader.players()

• OptaLoader.events()

18 Chapter 3. Loading data

https://www.whoscored.com/
https://soccerdata.readthedocs.io/en/latest/datasources/WhoScored.html

socceraction, Release 1.5.1

3.2 Loading data with kloppy

Similarly to socceraction, kloppy implements a unified data model for soccer data. The main differences between
kloppy and socceraction are: (1) kloppy supports more data sources (including tracking data), (2) kloppy uses a more
flexible object-based data model in contrast to socceraction’s dataframe-based model, and (3) kloppy covers a more
complete set of events while socceraction focuses on-the-ball events. Thus, we recommend using kloppy if you want to
load data from a source that is not supported by socceraction or when your analysis is not limited to on-the-ball events.

The following code snippet shows how to load data from StatsBomb using kloppy:

from kloppy import statsbomb

dataset = statsbomb.load_open_data(match_id=8657)

Instructions for loading data from other sources can be found in the kloppy documentation.

You can then convert the data to the SPADL format using the convert_to_actions() function:

from socceraction.spadl.kloppy import convert_to_actions

spadl_actions = convert_to_actions(dataset, game_id=8657)

Note: Currently, the data model of kloppy is only complete for StatsBomb data. If you use kloppy to load data from
other sources and convert it to the SPADL format, you may lose some information.

3.2. Loading data with kloppy 19

https://kloppy.pysport.org/
https://kloppy.pysport.org/

socceraction, Release 1.5.1

20 Chapter 3. Loading data

CHAPTER

FOUR

DATA REPRESENTATION

Socceraction uses a tabular action-oriented data format, as opposed to the formats by commercial vendors that
describe events. The distinction is that actions are a subset of events that require a player to perform the action. For
example, a passing event is an action, whereas an event signifying the end of the game is not an action. Unlike all other
event stream formats, we always store the same attributes for each action. Excluding optional information snippets
enables us to store the data in a table and more easily apply automatic analysis tools.

Socceraction implements two versions of this action-oriented data format: SPADL and Atomic-SPADL.

4.1 SPADL

4.1.1 Definitions

SPADL (Soccer Player Action Description Language) represents a game as a sequence of on-the-ball actions
[𝑎1, 𝑎2, ..., 𝑎𝑚], where 𝑚 is the total number of actions that happened in the game. Each action is a tuple of the
same twelve attributes:

Attribute Description
game_id the ID of the game in which the action was performed
period_id the ID of the game period in which the action was performed
seconds the action’s start time
player the player who performed the action
team the player’s team
start_x the x location where the action started
start_y the y location where the action started
end_x the x location where the action ended
end_y the y location where the action ended
action_type the type of the action (e.g., pass, shot, dribble)
result the result of the action (e.g., success or fail)
bodypart the player’s body part used for the action

Start and End Locations
SPADL uses a standardized coordinate system with the origin on the bottom left of the pitch, and a uniform
field of 105m x 68m. For direction of play, SPADL uses the “home team attacks to the right” convention, but
this can be converted conveniently with the play_left_to_right() function such that the lower x-coordinates
represent the own half of the team performing the action.

21

socceraction, Release 1.5.1

Action Type
The action type attribute can have 22 possible values. These are pass, cross, throw-in, crossed free kick, short
free kick, crossed corner, short corner, take-on, foul, tackle, interception, shot, penalty shot, free kick shot,
keeper save, keeper claim, keeper punch, keeper pick-up, clearance, bad touch, dribble and goal kick. A detailed
definition of each action type is available here.

Result
The result attribute can either have the value success, to indicate that an action achieved it’s intended result; or
the value fail, if this was not the case. An example of a successful action is a pass which reaches a teammate.
An example of an unsuccessful action is a pass which goes over the sideline. Some action types can have special
results. These are offside (for passes, corners and free-kicks), own goal (for shots), and yellow card and red card
(for fouls).

Body Part
The body part attribute can have 4 possible values. These are foot, head, other and none. For Wyscout, which
does not distinguish between the head and other body parts a special body part head/other is used.

All actions, except for some dribbles, are derived from an event in the original event stream data. They can be linked
back to the original data by the original_event_id attribute. Synthetic dribbles are added to fill gaps between two events.
These synthetic dribbles do not have an original_event_id.

4.1.2 Example

Socceraction currently implements converters for StatsBomb, Wyscout, and Opta event stream data. We’ll use Stats-
Bomb data to illustrate the API, but the API of the other converters is identical.

First, we load the event stream data of the third place play-off in the 2018 FIFA World Cup between Belgium and
England.

from socceraction.data.statsbomb import StatsBombLoader

SBL = StatsBombLoader()
df_events = SBL.events(game_id=8657)

22 Chapter 4. Data representation

socceraction, Release 1.5.1

These events can now be converted to SPADL using the convert_to_actions() function of the StatsBomb converter.

import socceraction.spadl as spadl

df_actions = spadl.statsbomb.convert_to_actions(df_events, home_team_id=777)

The obtained dataframe represents the body part, result, action type, players and teams with numeric IDs. The code
below adds their corresponding names.

df_actions = (
spadl
.add_names(df_actions) # add actiontype and result names
.merge(SBL.teams(game_id=8657)) # add team names
.merge(SBL.players(game_id=8657)) # add player names

)

Below are the five actions in the SPADL format leading up to Belgium’s second goal.

game_id pe-
riod_id

sec-
onds

team player start_x start_y end_x end_y action-
type

re-
sult

body-
part

8657 2 2179 Bel-
gium

Witsel 37.1 44.8 53.8 48.2 pass suc-
cess

foot

8657 2 2181 Bel-
gium

De
Bruyne

53.8 48.2 70.6 42.2 dribble suc-
cess

foot

8657 2 2184 Bel-
gium

De
Bruyne

70.6 42.2 87.4 49.1 pass suc-
cess

foot

8657 2 2185 Bel-
gium

Hazard 87.4 49.1 97.9 38.7 dribble suc-
cess

foot

8657 2 2187 Bel-
gium

Hazard 97.9 38.7 105 37.4 shot suc-
cess

foot

Here is the same phase visualized using the matplotsoccer package

See also:

This notebook gives an example of the complete pipeline to download public StatsBomb data and convert it to the
SPADL format.

4.1. SPADL 23

https://github.com/ML-KULeuven/socceraction/blob/master/public-notebooks/1-load-and-convert-statsbomb-data.ipynb

socceraction, Release 1.5.1

4.2 Atomic-SPADL

4.2.1 Definitions

Atomic-SPADL is an alternative version of SPADL which removes the result attribute from SPADL and adds a few
new action types. Each action is a now a tuple of the following eleven attributes:

Attribute Description
game_id the ID of the game in which the action was performed
period_id the ID of the game period in which the action was performed
seconds the action’s start time
player the player who performed the action
team the player’s team
x the x location where the action started
y the y location where the action started
dx the distance covered by the action along the x-axis
dy the distance covered by the action along the y-axis
action_type the type of the action (e.g., pass, shot, dribble)
bodypart the player’s body part used for the action

In this representation, all actions are atomic in the sense that they are always completed successfully without inter-
ruption. Consequently, while SPADL treats a pass as one action consisting of both the initiation and receival of the
pass, Atomic-SPADL sees giving and receiving a pass as two separate actions. Because not all passes successfully
reach a teammate, Atomic-SPADL introduces an interception action if the ball was intercepted by the other team or an
out event if the ball went out of play. Atomic-SPADL similarly divides shots, freekicks, and corners into two separate
actions. Practically, the effect is that this representation helps to distinguish the contribution of the player who initiates
the action (e.g., gives the pass) and the player who completes the action (e.g., receives the pass).

4.2.2 Example

SPADL actions can be converted to their atomic version with the convert_to_atomic() function.

import socceraction.atomic.spadl as atomicspadl

df_atomic_actions = atomicspadl.convert_to_atomic(df_actions)

This is what Belgium’s second goal against England in the third place play-off in the 2018 FIFA world cup looks like
in the Atomic-SPADL format.

24 Chapter 4. Data representation

socceraction, Release 1.5.1

game_id pe-
riod_id

sec-
onds

team player x y dx dy action-
type

body-
part

8657 2 2179 Bel-
gium

Witsel 37.1 44.8 0.0 0.0 dribble foot

8657 2 2179 Bel-
gium

Witsel 37.1 44.8 16.8 3.4 pass foot

8657 2 2180 Bel-
gium

De
Bruyne

53.8 48.2 0.0 0.0 receival foot

8657 2 2181 Bel-
gium

De
Brunne

53.8 48.2 16.8 -6.0 dribble foot

8657 2 2184 Bel-
gium

De
Bruyne

70.6 42.2 16.8 6.9 pass foot

8657 2 2184 Bel-
gium

Hazard 87.4 49.1 0.0 0.0 receival foot

8657 2 2185 Bel-
gium

Hazard 87.4 49.1 10.6 -
10.3

dribble foot

8657 2 2187 Bel-
gium

Hazard 97.9 38.7 7.1 -1.4 shot foot

8657 2 2187 Bel-
gium

Hazard 105.0 37.4 0.0 0.0 goal foot

See also:

This notebook gives an example of the complete pipeline to download public StatsBomb data and convert it to the
Atommic-SPADL format.

4.2. Atomic-SPADL 25

https://github.com/ML-KULeuven/socceraction/blob/master/public-notebooks/ATOMIC-1-load-and-convert-statsbomb-data.ipynb

socceraction, Release 1.5.1

26 Chapter 4. Data representation

CHAPTER

FIVE

VALUING ACTIONS

Once you’ve collected the data and converted it to the SPADL format, you can start valuing the contributions of soccer
players. This document gives a general introduction to action-valuing frameworks and links to a detailed discussion of
the three implemented frameworks.

5.1 General idea

When considering event stream data, a soccer match can be viewed as a sequence of 𝑛 consecutive on-the-ball actions
[𝑎1, 𝑎2, . . . , 𝑎𝑛] (e.g., [pass, dribble,. . . , interception]). Action-valuing frameworks aim to assign a numeric value to
each of these individual actions that quantifies how much the action contributed towards winning the game. This value
should reflect both the circumstances under which it was performed as well as its longer-term effects. This is illustrated
in the figure below:

However, rather than directly assigning values to actions, the existing approaches all start by assigning values to game
states. To illustrate the underlying intuition, consider the pass below:

27

socceraction, Release 1.5.1

The effect of the pass was to change the game state:

The figure on the left shows the game in state 𝑆𝑖1 = {𝑎1, . . . , 𝑎𝑖1}, right before Benzema passes to Valverde and the
one on the right shows the game in state 𝑆𝑖 = {𝑎1, . . . , 𝑎𝑖1, 𝑎𝑖} just after Valverde successfully controlled the pass.

Consequently, a natural way to assess the usefulness of an action is to assign a value to each game state. Then an
action’s usefulness is simply the difference between the post-action game state 𝑆𝑖 and pre-action game state 𝑆𝑖−1. This
can be expressed as:

𝑈(𝑎𝑖) = 𝑉 (𝑆𝑖)− 𝑉 (𝑆𝑖−1),

where 𝑉 captures the value of a particular game state.

The differences between different action-valuing frameworks arise in terms of (1) how they represent a game state 𝑆𝑖,
that is, define features such as the ball’s location or score difference that capture relevant aspects of the game at a
specific point in time; and (2) assign a value 𝑉 to a specific game state.

5.2 Implemented frameworks

The socceraction package implements three frameworks to assess the impact of the individual actions performed by
soccer players: Expected Threat (xT), VAEP and Atomic-VAEP.

5.2.1 Expected Threat (xT)

The expected threat or xT model is a possession-based model. That is, it divides matches into possessions, which are
periods of the game where the same team has control of the ball. The key insights underlying xT are that (1) players
perform actions with the intention to increase their team’s chance of scoring, and (2) the chance of scoring can be
adequately captured by only considering the location of the ball.

Point (2) means that xT represents a game state solely by using the current location of the ball. Therefore, xT overlays
a 𝑀 × 𝑁 grid on the pitch in order to divide it into zones. Each zone 𝑧 is then assigned a value 𝑥𝑇 (𝑧) that reflects
how threatening teams are at that location, in terms of scoring. These xT values are illustrated in the figure below.

28 Chapter 5. Valuing actions

socceraction, Release 1.5.1

The value of each zone can be learned with a Markov decision process. The corresponding code is shown below. For
an intuitive explanation of how this works, we refer to Karun’s blog post.

import pandas as pd
from socceraction.data.statsbomb import StatsBombLoader
import socceraction.spadl as spadl
import socceraction.xthreat as xthreat

1. Load a set of actions to train the model on
SBL = StatsBombLoader()
df_games = SBL.games(competition_id=43, season_id=3)
dataset = [

{
**game,
'actions': spadl.statsbomb.convert_to_actions(

events=SBL.events(game['game_id']),
home_team_id=game['home_team_id']

)
}
for game in df_games.to_dict(orient='records')

]

2. Convert direction of play + add names
df_actions_ltr = pd.concat([
spadl.play_left_to_right(game['actions'], game['home_team_id'])
for game in dataset

])
df_actions_ltr = spadl.add_names(df_actions_ltr)

(continues on next page)

5.2. Implemented frameworks 29

https://karun.in/blog/expected-threat.html

socceraction, Release 1.5.1

(continued from previous page)

3. Train xT model with 16 x 12 grid
xTModel = xthreat.ExpectedThreat(l=16, w=12)
xTModel.fit(df_actions_ltr)

4. Rate ball-progressing actions
xT should only be used to value actions that move the ball
and that keep the current team in possession of the ball
df_mov_actions = xthreat.get_successful_move_actions(df_actions_ltr)
df_mov_actions["xT_value"] = xTModel.rate(df_mov_actions)

See also:

This notebook gives an example of the complete pipeline to train and apply an xT model.

5.2.2 VAEP

VAEP (Valuing Actions by Estimating Probabilities) is based on the insight that players tend to perform actions with
two possible intentions:

1. increase the chance of scoring a goal in the short-term future and/or,

2. decrease the chance of conceding a goal in the short-term future.

Valuing an action then requires assessing the change in probability for both scoring and conceding as a result of an
action. Thus, VAEP values a game state as:

𝑉 (𝑆𝑖) = 𝑃𝑠𝑐𝑜𝑟𝑒(𝑆𝑖, 𝑡)− 𝑃𝑐𝑜𝑛𝑐𝑒𝑑𝑒(𝑆𝑖, 𝑡),

where 𝑃𝑠𝑐𝑜𝑟𝑒(𝑆𝑖, 𝑡) and 𝑃𝑐𝑜𝑛𝑐𝑒𝑑𝑒(𝑆𝑖, 𝑡) are the probabilities that team 𝑡 which possesses the ball in state 𝑆𝑖 will re-
spectively score or concede in the next 10 actions.

The remaining challenge is to “learn” 𝑃𝑠𝑐𝑜𝑟𝑒(𝑆𝑖, 𝑡) and 𝑃𝑐𝑜𝑛𝑐𝑒𝑑𝑒(𝑆𝑖, 𝑡). That is, a gradient boosted binary classifier
is trained on historical data to predict how a game state will turn out based on what happened in similar game states
that arose in past games. VAEP also uses a more complex representation of the game state: it considers the three last
actions that happened during the game: 𝑆𝑖 = {𝑎𝑖−2, 𝑎𝑖1, 𝑎𝑖}. With the code below, you can convert the SPADL action
of the game to these game states:

import socceraction.vaep.features as fs

1. convert actions to game states
gamestates = fs.gamestates(actions, 3)
gamestates = fs.play_left_to_right(gamestates, home_team_id)

Then each game state is represented using three types of features. The first category of features includes characteristics
of the action itself such as its location and type as well as more complex relationships such as the distance and angle
to the goal. The second category of features captures the context of the action, such as the current tempo of the game,
by comparing the properties of consecutive actions. Examples of this type of feature include the distance covered and
time elapsed between consecutive actions. The third category of features captures the current game context by looking
at things such as the time remaining in the match and the current score differential. The table below gives an overview
the features that can be used to encoded a gamestate 𝑆𝑖 = {𝑎𝑖−2, 𝑎𝑖1, 𝑎𝑖}:

30 Chapter 5. Valuing actions

https://github.com/ML-KULeuven/socceraction/blob/master/public-notebooks/EXTRA-run-xT.ipynb

socceraction, Release 1.5.1

Transformer Feature Description
actiontype() action-

type(_onehot)_ai
The (one-hot encoding) of the action’s type.

result() re-
sult(_onehot)_ai

The (one-hot encoding) of the action’s result.

bodypart() action-
type(_onehot)_ai

The (one-hot encoding) of the bodypart used to perform the action.

time() time_ai Time in the match the action takes place, recorded to the second.
startlocation()start_x_ai The x pitch coordinate of the action’s start location.

start_y_ai The y pitch coordinate of the action’s start location.
endlocation()end_x_ai The x pitch coordinate of the action’s end location.

end_y_ai The y pitch coordinate of the action’s end location.
startpolar() start_dist_to_goal_aiThe distance to the center of the goal from the action’s start location.

start_angle_to_goal_aiThe angle between the action’s start location and center of the goal.
endpolar() end_dist_to_goal_aiThe distance to the center of the goal from the action’s end location.

end_angle_to_goal_aiThe angle between the action’s end location and center of the goal.
movement() dx_ai The distance covered by the action along the x-axis.

dy_ai The distance covered by the action along the y-axis.
movement_ai The total distance covered by the action.

team() team_ai Boolean indicating whether the team that had possesion in action 𝑎𝑖−2 still has
possession in the current action.

time_delta() time_delta_i Seconds elapsed between 𝑎𝑖−2 and the current action.
space_delta()dx_a0i The distance covered by action 𝑎𝑖−2 to 𝑎𝑖 along the x-axis.

dy_a0i The distance covered by action 𝑎𝑖−2 to 𝑎𝑖 along the y-axis.
mov_a0i The total distance covered by action 𝑎𝑖−2 to 𝑎𝑖.

goalscore() goalscore_team The number of goals scored by the team executing the action.
goalscore_opponentThe number of goals scored by the other team.
goalscore_diff The goal difference between both teams.

import socceraction.vaep.features as fs

2. compute features
xfns = [fs.actiontype, fs.result, ...]
X = pd.concat([fn(gamestates) for fn in xfns], axis=1)

For estimating 𝑃𝑠𝑐𝑜𝑟𝑒(𝑆𝑖, 𝑡), each game state is given a positive label (= 1) if the team that possesses the ball after action
𝑎𝑖 scores a goal in the subsequent 𝑘 actions. Otherwise, a negative label (= 0) is given to the game state. Analogously,
for estimating 𝑃𝑐𝑜𝑛𝑐𝑒𝑑𝑒(𝑆𝑖, 𝑡), each game state is given a positive label (= 1) if the team that possesses the ball after
action 𝑎𝑖 concedes a goal in the subsequent 𝑘 actions. If not, a negative label (= 0) is given to the game state.

import socceraction.vaep.labels as lab

3. compute labels
yfns = [lab.scores, lab.concedes]
Y = pd.concat([fn(actions) for fn in yfns], axis=1)

VAEP models the scoring and conceding probabilities separately as these effects may be asymmetric in nature and
context-dependent. Hence, it trains one gradient boosted tree model to predict each one based on the current game
state.

4. load or train models
models = {

(continues on next page)

5.2. Implemented frameworks 31

socceraction, Release 1.5.1

(continued from previous page)

"scores": Classsifier(...)
"concedes": Classsifier(...)

}

5. predict scoring and conceding probabilities for each game state
for col in ["scores", "concedes"]:

Y_hat[col] = models[col].predict_proba(testX)

Using these probabilities, VAEP defines the offensive value of an action as the change in scoring probability before and
after the action.

∆𝑃score(𝑎𝑖, 𝑡) = 𝑃 𝑘
score(𝑆𝑖, 𝑡)− 𝑃 𝑘

score(𝑆𝑖−1, 𝑡)

This change will be positive if the action increased the probability that the team which performed the action will score
(e.g., a successful tackle to recover the ball). Similarly, VAEP defines the defensive value of an action as the change in
conceding probability.

∆𝑃concede(𝑎𝑖, 𝑡) = 𝑃 𝑘
concede(𝑆𝑖, 𝑡)− 𝑃 𝑘

concede(𝑆𝑖−1, 𝑡)

This change will be positive if the action increased the probability that the team will concede a goal (e.g., a failed pass).
Finally, the total VAEP value of an action is the difference between that action’s offensive value and defensive value.

𝑉VAEP(𝑎𝑖) = ∆𝑃score(𝑎𝑖, 𝑡)−∆𝑃concede(𝑎𝑖, 𝑡)

import socceraction.vaep.formula as vaepformula

6. compute VAEP value
values = vaepformula.value(actions, Y_hat["scores"], Y_hat["concedes"])

See also:

A set of notebooks illustrates the complete pipeline to train and apply a VAEP model:

1. compute features and labels

2. estimate scoring and conceding probabilities

3. compute VAEP values and top players

5.2.3 Atomic-VAEP

When building models to value actions, a heavy point of debate is how to handle the results of actions. In other words,
should our model make a distinction between a failed and a successful pass or not? On the one hand, an action should
be valued on all its properties, and whether or not the action was successful (e.g., did a pass receive a teammate, was a
shot converted into a goal) plays a crucial role in how useful the action was. That is, if you want to measure a player’s
contribution during a match, successful actions are important. This is the viewpoint of SPADL and VAEP.

On the other hand, including the result of an action intertwines the contribution of the player who started the action
(e.g., provides the pass) and the player who completes it (e.g., receives the pass). Perhaps a pass was not successful
because of its recipient’s poor touch or because he was not paying attention. It would seem unfair to penalize the player
who provided the pass in such a circumstance. Hence, it can be useful to generalize over possible results of an action
to arrive at an action’s “expected value”.

The combination of Atomic-SPADL and VAEP accomodates this alternative viewpoint. Atomic-SPADL removes the
“result” attribute from SPADL and adds a few new action and event types. This affects the features that can be computed

32 Chapter 5. Valuing actions

https://github.com/ML-KULeuven/socceraction/blob/master/public-notebooks/2-compute-features-and-labels.ipynb
https://github.com/ML-KULeuven/socceraction/blob/master/public-notebooks/3-estimate-scoring-and-conceding-probabilities.ipynb
https://github.com/ML-KULeuven/socceraction/blob/master/public-notebooks/4-compute-vaep-values-and-top-players.ipynb

socceraction, Release 1.5.1

to represent each game state. By default, Atomic-VAEP uses the following features to encoded a gamestate 𝑆𝑖 =
{𝑎𝑖−2, 𝑎𝑖1, 𝑎𝑖}:

Transformer Feature Description
actiontype() action-

type(_onehot)_ai
The (one-hot encoding) of the action’s type.

bodypart() action-
type(_onehot)_ai

The (one-hot encoding) of the bodypart used to perform the action.

time() time_ai Time in the match the action takes place, recorded to the second.
team() team_ai Boolean indicating whether the team that had possesion in action 𝑎𝑖−2 still has

possession in the current action.
time_delta() time_delta_i Seconds elapsed between 𝑎𝑖−2 and the current action.
location() x_ai The x pitch coordinate of the action.

y_ai The y pitch coordinate of the action.
polar() dist_to_goal_ai The distance to the center of the goal.

an-
gle_to_goal_ai

The angle between the start location and center of the goal.

movement_polar()mov_d_ai The distance covered by the action.
mov_angle_ai The direction in which the action was executed (relative to the top left of the

field).
direction() dx_ai Direction of the action, expressed as the x-component of the unit vector.

dy_ai Direction of the action, expressed as the y-component of the unit vector.
goalscore() goalscore_team The number of goals scored by the team executing the action.

goalscore_opponentThe number of goals scored by the other team.
goalscore_diff The goal difference between both teams.

The computation of the labels and the VAEP formula are similar to the standard VAEP model.

Empirically, we have noticed two benefits of using the Atomic-SPADL representation. First, the standard SPADL
representation tends to assign shots a value that is the difference between the shot’s true outcome and its xG score.
Hence, goals or a number of misses, particularly for players who do not take a lot of shots can have an outsized effect
on their VAEP score. In contrast, Atomic-SPADL assigns shots a value closer to their xG score, which often better
matches domain experts’ intuitions on action values.

Second, Atomic-SPADL leads to more robust action values and player ratings. A good rating system should capture
the true quality of all players. Although some fluctuations in performances are possible across games, over the course
of a season a few outstanding performances (possibly stemming from a big portion of luck) should not dramatically
alter an assessment of a player. In our prior work comparing VAEP to xT, one advantage of xT was that it produced
more stable ratings. Using Atomic-SPADL helps alleviate this weakness.

See also:

A set of notebooks illustrates the complete pipeline to train and apply an Atomic-VAEP model:

1. compute features and labels

2. estimate scoring and conceding probabilities

3. compute VAEP values and top players

5.2. Implemented frameworks 33

https://github.com/ML-KULeuven/socceraction/blob/master/public-notebooks/ATOMIC-2-compute-features-and-labels.ipynb
https://github.com/ML-KULeuven/socceraction/blob/master/public-notebooks/ATOMIC-3-estimate-scoring-and-conceding-probabilities.ipynb
https://github.com/ML-KULeuven/socceraction/blob/master/public-notebooks/ATOMIC-4-compute-vaep-values-and-top-players.ipynb

socceraction, Release 1.5.1

34 Chapter 5. Valuing actions

CHAPTER

SIX

FAQ

Q: What is socceraction? Socceraction is an open source Python package that primarily provides an implementation
of the VAEP possession value framework. However, the package also provides a number of other features, such as API
clients for loading data from the most popular data providers and converters for each of these data provider’s proprietary
data formats to a common action-based data format (i.e., SPADL) that enables subsequent data analysis. Therefore,
socceraction can take away some of the heavy data preprocessing burden from researchers and data scientists who are
interested in working with soccer event stream data.

Q: Where can I get event stream data? Both StatsBomb and Wyscout provide a free sample of their data. Alterna-
tively, you can buy a subscription to the event data feed from StatsBomb, Wyscout or Opta (Stats Perform). Instructions
on how to load the data from each of these sources with socceraction are available in the documentation.

Q: What license is socceraction released under? Socceraction is released under the MIT license. You are free to
use, modify and redistribute socceraction in any way you see fit. However, if you do use socceraction in your research,
please cite our research papers. When you use socceraction in public work or when building a product or service using
socceraction, we kindly request that you include the following attribution text in all advertising and documentation:

This product includes socceraction created by the <a href="https://dtai.cs.kuleuven.be/
→˓sports/">DTAI Sports Analytics lab,
available from https://github.com/
→˓ML-KULeuven/socceraction.

35

https://github.com/ML-KULeuven/socceraction/blob/master/LICENSE.rst

socceraction, Release 1.5.1

36 Chapter 6. FAQ

CHAPTER

SEVEN

SOCCERACTION.DATA

StatsBomb Module for loading StatsBomb event data
Opta Module for loading Opta event data and the derived formats used by Stats Per-

form and WhoScored
Wyscout Module for loading Wyscout event data

7.1 socceraction.data.base

Implements serializers for the event data of various providers.

7.1.1 Serializers

socceraction.data.base.EventDataLoader Load event data either from a remote location or from a
local folder.

socceraction.data.base.EventDataLoader

class socceraction.data.base.EventDataLoader

Load event data either from a remote location or from a local folder.

Parameters

• root (str) – Root-path of the data.

• getter (str) – “remote” or “local”

37

socceraction, Release 1.5.1

Methods

competitions Return a dataframe with all available competitions
and seasons.

events Return a dataframe with the event stream of a game.
games Return a dataframe with all available games in a sea-

son.
players Return a dataframe with all players that participated

in a game.
teams Return a dataframe with both teams that participated

in a game.

socceraction.data.base.EventDataLoader.competitions

abstract EventDataLoader.competitions()

Return a dataframe with all available competitions and seasons.

Returns
A dataframe containing all available competitions and seasons. See CompetitionSchema
for the schema.

Return type
pd.DataFrame

socceraction.data.base.EventDataLoader.events

abstract EventDataLoader.events(game_id)
Return a dataframe with the event stream of a game.

Parameters
game_id (int) – The ID of the game.

Returns
A dataframe containing the event stream. See EventSchema for the schema.

Return type
pd.DataFrame

socceraction.data.base.EventDataLoader.games

abstract EventDataLoader.games(competition_id, season_id)
Return a dataframe with all available games in a season.

Parameters

• competition_id (int) – The ID of the competition.

• season_id (int) – The ID of the season.

Returns
A dataframe containing all available games. See GameSchema for the schema.

Return type
pd.DataFrame

38 Chapter 7. socceraction.data

socceraction, Release 1.5.1

socceraction.data.base.EventDataLoader.players

abstract EventDataLoader.players(game_id)
Return a dataframe with all players that participated in a game.

Parameters
game_id (int) – The ID of the game.

Returns
A dataframe containing all players. See PlayerSchema for the schema.

Return type
pd.DataFrame

socceraction.data.base.EventDataLoader.teams

abstract EventDataLoader.teams(game_id)
Return a dataframe with both teams that participated in a game.

Parameters
game_id (int) – The ID of the game.

Returns
A dataframe containing both teams. See TeamSchema for the schema.

Return type
pd.DataFrame

7.1.2 Schema

socceraction.data.schema.CompetitionSchema Definition of a dataframe containing a list of competi-
tions and seasons.

socceraction.data.schema.TeamSchema Definition of a dataframe containing the list of teams of
a game.

socceraction.data.schema.PlayerSchema Definition of a dataframe containing the list of players
on the teamsheet of a game.

socceraction.data.schema.GameSchema Definition of a dataframe containing a list of games.
socceraction.data.schema.EventSchema Definition of a dataframe containing event stream data

of a game.

socceraction.data.schema.CompetitionSchema

class socceraction.data.schema.CompetitionSchema(*args, **kwargs)
Definition of a dataframe containing a list of competitions and seasons.

7.1. socceraction.data.base 39

socceraction, Release 1.5.1

Attributes

competition_id The unique identifier for the competition.
competition_name The name of the competition.
season_id The unique identifier for the season.
season_name The name of the season.

socceraction.data.schema.TeamSchema

class socceraction.data.schema.TeamSchema(*args, **kwargs)
Definition of a dataframe containing the list of teams of a game.

Attributes

team_id The unique identifier for the team.
team_name The name of the team.

socceraction.data.schema.PlayerSchema

class socceraction.data.schema.PlayerSchema(*args, **kwargs)
Definition of a dataframe containing the list of players on the teamsheet of a game.

Attributes

game_id The unique identifier for the game.
is_starter Whether the player is in the starting lineup.
jersey_number The player's jersey number.
minutes_played The number of minutes the player played in the game.
player_id The unique identifier for the player.
player_name The name of the player.
team_id The unique identifier for the player's team.

socceraction.data.schema.GameSchema

class socceraction.data.schema.GameSchema(*args, **kwargs)
Definition of a dataframe containing a list of games.

40 Chapter 7. socceraction.data

socceraction, Release 1.5.1

Attributes

away_team_id The unique identifier for the away team in this game.
competition_id The unique identifier for the competition.
game_date The date when the game was played.
game_day Number corresponding to the weeks or rounds into

the competition this game is.
game_id The unique identifier for the game.
home_team_id The unique identifier for the home team in this game.
season_id The unique identifier for the season.

socceraction.data.schema.EventSchema

class socceraction.data.schema.EventSchema(*args, **kwargs)
Definition of a dataframe containing event stream data of a game.

Attributes

event_id The unique identifier for the event.
game_id The unique identifier for the game.
period_id The unique identifier for the part of the game in which

the event took place.
player_id The unique identifier for the player this event relates

to.
team_id The unique identifier for the team this event relates

to.
type_id The unique identifier for the type of this event.
type_name The name of the type of this event.

7.2 socceraction.data.statsbomb

Module for loading StatsBomb event data.

7.2.1 Serializers

socceraction.data.statsbomb.
StatsBombLoader

Load Statsbomb data either from a remote location or
from a local folder.

7.2. socceraction.data.statsbomb 41

socceraction, Release 1.5.1

socceraction.data.statsbomb.StatsBombLoader

class socceraction.data.statsbomb.StatsBombLoader(getter='remote', root=None, creds=None)
Load Statsbomb data either from a remote location or from a local folder.

To load remote data, this loader uses the statsbombpy package. Data can be retrieved from the StatsBomb API
and from the Open Data GitHub repo. API access is for paying customers only. Authentication can be done by
setting environment variables named SB_USERNAME and SB_PASSWORD to your login credentials. Alternatively,
pass your login credentials using the creds parameter. StatsBomb’s open data can be accessed without the need
of authentication but its use is subject to a user agreement.

To load local data, point root to the root folder of the data. This folder should use the same directory structure
as used in the Open Data GitHub repo.

Parameters

• getter (str) – “remote” or “local”

• root (str, optional) – Root-path of the data. Only used when getter is “local”.

• creds (dict, optional) – Login credentials in the format {“user”: “”, “passwd”: “”}.
Only used when getter is “remote”.

Methods

__init__

competitions Return a dataframe with all available competitions
and seasons.

events Return a dataframe with the event stream of a game.
games Return a dataframe with all available games in a sea-

son.
players Return a dataframe with all players that participated

in a game.
teams Return a dataframe with both teams that participated

in a game.

socceraction.data.statsbomb.StatsBombLoader.__init__

StatsBombLoader.__init__(getter='remote', root=None, creds=None)

socceraction.data.statsbomb.StatsBombLoader.competitions

StatsBombLoader.competitions()

Return a dataframe with all available competitions and seasons.

Raises
ParseError – When the raw data does not adhere to the expected format.

Returns
A dataframe containing all available competitions and seasons. See
StatsBombCompetitionSchema for the schema.

42 Chapter 7. socceraction.data

https://github.com/statsbomb/statsbombpy
https://github.com/statsbomb/open-data/
https://github.com/statsbomb/open-data/blob/master/LICENSE.pdf

socceraction, Release 1.5.1

Return type
pd.DataFrame

socceraction.data.statsbomb.StatsBombLoader.events

StatsBombLoader.events(game_id, load_360=False)
Return a dataframe with the event stream of a game.

Parameters

• game_id (int) – The ID of the game.

• load_360 (bool) – Whether to load the 360 data.

Raises
ParseError – When the raw data does not adhere to the expected format.

Returns
A dataframe containing the event stream. See StatsBombEventSchema for the schema.

Return type
pd.DataFrame

socceraction.data.statsbomb.StatsBombLoader.games

StatsBombLoader.games(competition_id, season_id)
Return a dataframe with all available games in a season.

Parameters

• competition_id (int) – The ID of the competition.

• season_id (int) – The ID of the season.

Raises
ParseError – When the raw data does not adhere to the expected format.

Returns
A dataframe containing all available games. See StatsBombGameSchema for the schema.

Return type
pd.DataFrame

socceraction.data.statsbomb.StatsBombLoader.players

StatsBombLoader.players(game_id)
Return a dataframe with all players that participated in a game.

Parameters
game_id (int) – The ID of the game.

Raises
ParseError # noqa – DAR402: When the raw data does not adhere to the expected format.

Returns
A dataframe containing all players. See StatsBombPlayerSchema for the schema.

7.2. socceraction.data.statsbomb 43

socceraction, Release 1.5.1

Return type
pd.DataFrame

socceraction.data.statsbomb.StatsBombLoader.teams

StatsBombLoader.teams(game_id)
Return a dataframe with both teams that participated in a game.

Parameters
game_id (int) – The ID of the game.

Raises
ParseError # noqa – DAR402: When the raw data does not adhere to the expected format.

Returns
A dataframe containing both teams. See StatsBombTeamSchema for the schema.

Return type
pd.DataFrame

7.2.2 Schema

socceraction.data.statsbomb.
StatsBombCompetitionSchema

Definition of a dataframe containing a list of competi-
tions and seasons.

socceraction.data.statsbomb.
StatsBombTeamSchema

Definition of a dataframe containing the list of teams of
a game.

socceraction.data.statsbomb.
StatsBombPlayerSchema

Definition of a dataframe containing the list of players of
a game.

socceraction.data.statsbomb.
StatsBombGameSchema

Definition of a dataframe containing a list of games.

socceraction.data.statsbomb.
StatsBombEventSchema

Definition of a dataframe containing event stream data
of a game.

socceraction.data.statsbomb.StatsBombCompetitionSchema

class socceraction.data.statsbomb.StatsBombCompetitionSchema(*args, **kwargs)
Definition of a dataframe containing a list of competitions and seasons.

Attributes

competition_gender The gender of the players competing in the competi-
tion.

competition_id The unique identifier for the competition.
competition_name The name of the competition.
country_name The name of the country the competition relates to.
season_id The unique identifier for the season.
season_name The name of the season.

44 Chapter 7. socceraction.data

socceraction, Release 1.5.1

socceraction.data.statsbomb.StatsBombTeamSchema

class socceraction.data.statsbomb.StatsBombTeamSchema(*args, **kwargs)
Definition of a dataframe containing the list of teams of a game.

Attributes

team_id The unique identifier for the team.
team_name The name of the team.

socceraction.data.statsbomb.StatsBombPlayerSchema

class socceraction.data.statsbomb.StatsBombPlayerSchema(*args, **kwargs)
Definition of a dataframe containing the list of players of a game.

Attributes

game_id The unique identifier for the game.
is_starter Whether the player is in the starting lineup.
jersey_number The player's jersey number.
minutes_played The number of minutes the player played in the game.
nickname The nickname of the player on the team.
player_id The unique identifier for the player.
player_name The name of the player.
starting_position_id The unique identifier for the starting position of the

player on the team.
starting_position_name The name of the starting position of the player on the

team.
team_id The unique identifier for the player's team.

socceraction.data.statsbomb.StatsBombGameSchema

class socceraction.data.statsbomb.StatsBombGameSchema(*args, **kwargs)
Definition of a dataframe containing a list of games.

7.2. socceraction.data.statsbomb 45

socceraction, Release 1.5.1

Attributes

away_score The final score of the away team.
away_team_id The unique identifier for the away team in this game.
competition_id The unique identifier for the competition.
competition_stage The name of the phase of the competition this game

is in.
game_date The date when the game was played.
game_day Number corresponding to the weeks or rounds into

the competition this game is.
game_id The unique identifier for the game.
home_score The final score of the home team.
home_team_id The unique identifier for the home team in this game.
referee The name of the referee.
season_id The unique identifier for the season.
venue The name of the stadium where the game was played.

socceraction.data.statsbomb.StatsBombEventSchema

class socceraction.data.statsbomb.StatsBombEventSchema(*args, **kwargs)
Definition of a dataframe containing event stream data of a game.

46 Chapter 7. socceraction.data

socceraction, Release 1.5.1

Attributes

counterpress Pressing actions within 5 seconds of an open play
turnover.

duration If relevant, the length in seconds the event lasted.
event_id The unique identifier for the event.
extra A JSON string containing type-specific information.
freeze_frame_360 An array of freeze frame objects.
game_id The unique identifier for the game.
index Sequence notation for the ordering of events within

each match.
location Array containing the x and y coordinates of the event.
minute The minutes on the clock at the time of this event.
period_id The unique identifier for the part of the game in which

the event took place.
play_pattern_id The ID of the play pattern relevant to this event.
play_pattern_name The name of the play pattern relevant to this event.
player_id The unique identifier for the player this event relates

to.
player_name The name of the player this event relates to.
position_id The ID of the position the player was in at the time of

this event.
position_name The name of the position the player was in at the time

of this event.
possession Indicates the current unique possession in the game.
possession_team_id The ID of the team that started this possession in con-

trol of the ball.
possession_team_name The name of the team that started this possession in

control of the ball.
related_events A comma separated list of the IDs of related events.
second The second part of the timestamp.
team_id The unique identifier for the team this event relates

to.
team_name The name of the team this event relates to.
timestamp Time in the match the event takes place, recorded to

the millisecond.
type_id The unique identifier for the type of this event.
type_name The name of the type of this event.
under_pressure Whether the action was performed while being pres-

sured by an opponent.
visible_area_360 An array of coordinates describing the polygon visi-

ble to the camera / in the 360 frame.

7.2. socceraction.data.statsbomb 47

socceraction, Release 1.5.1

7.3 socceraction.data.opta

Module for loading Opta event data.

7.3.1 Serializers

socceraction.data.opta.OptaLoader Load Opta data feeds from a local folder.

socceraction.data.opta.OptaLoader

class socceraction.data.opta.OptaLoader(root, parser='xml', feeds=None)
Load Opta data feeds from a local folder.

Parameters

• root (str) – Root-path of the data.

• parser (str or dict) – Either ‘xml’, ‘json’, ‘statsperform’, ‘whoscored’ or a dict with a
custom parser for each feed. The default xml parser supports F7 and F24 feeds; the default
json parser supports F1, F9 and F24 feeds, the StatsPerform parser supports MA1 and MA3
feeds. Custom parsers can be specified as:

{
'feed1_name': Feed1Parser
'feed2_name': Feed2Parser

}

where Feed1Parser and Feed2Parser are classes implementing OptaParser and
‘feed1_name’ and ‘feed2_name’ are a unique ID for each feed that matches to the
keys in feeds.

• feeds (dict) – Glob pattern describing from which files the data from a specific game can
be retrieved. For example, if files are named:

f7-1-2021-17362.xml
f24-1-2021-17362.xml

use:

feeds = {
'f7': "f7-{competition_id}-{season_id}-{game_id}.xml",
'f24': "f24-{competition_id}-{season_id}-{game_id}.xml"

}

Raises
ValueError – If an invalid parser is provided.

48 Chapter 7. socceraction.data

socceraction, Release 1.5.1

Methods

__init__

competitions Return a dataframe with all available competitions
and seasons.

events Return a dataframe with the event stream of a game.
games Return a dataframe with all available games in a sea-

son.
players Return a dataframe with all players that participated

in a game.
teams Return a dataframe with both teams that participated

in a game.

socceraction.data.opta.OptaLoader.__init__

OptaLoader.__init__(root, parser='xml', feeds=None)

socceraction.data.opta.OptaLoader.competitions

OptaLoader.competitions()

Return a dataframe with all available competitions and seasons.

Returns
A dataframe containing all available competitions and seasons. See
OptaCompetitionSchema for the schema.

Return type
pd.DataFrame

socceraction.data.opta.OptaLoader.events

OptaLoader.events(game_id)
Return a dataframe with the event stream of a game.

Parameters
game_id (int) – The ID of the game.

Returns
A dataframe containing the event stream. See OptaEventSchema for the schema.

Return type
pd.DataFrame

7.3. socceraction.data.opta 49

socceraction, Release 1.5.1

socceraction.data.opta.OptaLoader.games

OptaLoader.games(competition_id, season_id)
Return a dataframe with all available games in a season.

Parameters

• competition_id (int) – The ID of the competition.

• season_id (int) – The ID of the season.

Returns
A dataframe containing all available games. See OptaGameSchema for the schema.

Return type
pd.DataFrame

socceraction.data.opta.OptaLoader.players

OptaLoader.players(game_id)
Return a dataframe with all players that participated in a game.

Parameters
game_id (int) – The ID of the game.

Returns
A dataframe containing all players. See OptaPlayerSchema for the schema.

Return type
pd.DataFrame

socceraction.data.opta.OptaLoader.teams

OptaLoader.teams(game_id)
Return a dataframe with both teams that participated in a game.

Parameters
game_id (int) – The ID of the game.

Returns
A dataframe containing both teams. See OptaTeamSchema for the schema.

Return type
pd.DataFrame

50 Chapter 7. socceraction.data

socceraction, Release 1.5.1

7.3.2 Schema

socceraction.data.opta.
OptaCompetitionSchema

Definition of a dataframe containing a list of competi-
tions and seasons.

socceraction.data.opta.OptaTeamSchema Definition of a dataframe containing the list of teams of
a game.

socceraction.data.opta.OptaPlayerSchema Definition of a dataframe containing the list of players of
a game.

socceraction.data.opta.OptaGameSchema Definition of a dataframe containing a list of games.
socceraction.data.opta.OptaEventSchema Definition of a dataframe containing event stream data

of a game.

socceraction.data.opta.OptaCompetitionSchema

class socceraction.data.opta.OptaCompetitionSchema(*args, **kwargs)
Definition of a dataframe containing a list of competitions and seasons.

Attributes

competition_id The unique identifier for the competition.
competition_name The name of the competition.
season_id The unique identifier for the season.
season_name The name of the season.

socceraction.data.opta.OptaTeamSchema

class socceraction.data.opta.OptaTeamSchema(*args, **kwargs)
Definition of a dataframe containing the list of teams of a game.

Attributes

team_id The unique identifier for the team.
team_name The name of the team.

socceraction.data.opta.OptaPlayerSchema

class socceraction.data.opta.OptaPlayerSchema(*args, **kwargs)
Definition of a dataframe containing the list of players of a game.

7.3. socceraction.data.opta 51

socceraction, Release 1.5.1

Attributes

game_id The unique identifier for the game.
is_starter Whether the player is in the starting lineup.
jersey_number The player's jersey number.
minutes_played The number of minutes the player played in the game.
player_id The unique identifier for the player.
player_name The name of the player.
starting_position The starting position of the player.
team_id The unique identifier for the player's team.

socceraction.data.opta.OptaGameSchema

class socceraction.data.opta.OptaGameSchema(*args, **kwargs)
Definition of a dataframe containing a list of games.

Attributes

attendance The number of people who attended the game.
away_manager The name of the manager of the away team.
away_score The final score of the away team.
away_team_id The unique identifier for the away team in this game.
competition_id The unique identifier for the competition.
duration The total duration of the game in minutes.
game_date The date when the game was played.
game_day Number corresponding to the weeks or rounds into

the competition this game is.
game_id The unique identifier for the game.
home_manager The name of the manager of the home team.
home_score The final score of the home team.
home_team_id The unique identifier for the home team in this game.
referee The name of the referee.
season_id The unique identifier for the season.
venue The name of the stadium where the game was played.

socceraction.data.opta.OptaEventSchema

class socceraction.data.opta.OptaEventSchema(*args, **kwargs)
Definition of a dataframe containing event stream data of a game.

52 Chapter 7. socceraction.data

socceraction, Release 1.5.1

Attributes

assist Whether the event was an assist or not.
end_x The x coordinate of the location where the event

ended.
end_y The y coordinate of the location where the event

ended.
event_id The unique identifier for the event.
game_id The unique identifier for the game.
goal Whether the event was a goal or not.
keypass Whether the event was a keypass or not.
minute The minutes on the clock at the time of this event.
outcome Whether the event had a successful outcome or not.
period_id The unique identifier for the part of the game in which

the event took place.
player_id The unique identifier for the player this event relates

to.
qualifiers A JSON object containing the Opta qualifiers of the

event.
related_player_id The ID of a second player that was involved in this

event.
second The second part of the timestamp.
shot Whether the event was a shot or not.
start_x The x coordinate of the location where the event

started.
start_y The y coordinate of the location where the event

started.
team_id The unique identifier for the team this event relates

to.
timestamp Time in the match the event takes place, recorded to

the millisecond.
touch Whether the event was a on-the-ball action or not.
type_id The unique identifier for the type of this event.
type_name The name of the type of this event.

7.4 socceraction.data.wyscout

Module for loading Wyscout event data.

7.4.1 Serializers

socceraction.data.wyscout.WyscoutLoader Load event data either from a remote location or from a
local folder.

socceraction.data.wyscout.
PublicWyscoutLoader

Load the public Wyscout dataset.

7.4. socceraction.data.wyscout 53

socceraction, Release 1.5.1

socceraction.data.wyscout.WyscoutLoader

class socceraction.data.wyscout.WyscoutLoader(root='https://apirest.wyscout.com/v2/', getter='remote',
feeds=None, creds=None)

Load event data either from a remote location or from a local folder.

Parameters

• root (str) – Root-path of the data.

• getter (str or callable, default: "remote") – “remote”, “local” or a function
that returns loads JSON data from a path.

• feeds (dict(str, str)) – Glob pattern for each feed that should be parsed. The default
feeds for a “remote” getter are:

{
'competitions': 'competitions',
'seasons': 'competitions/{season_id}/seasons',
'games': 'seasons/{season_id}/matches',
'events': 'matches/{game_id}/events?fetch=teams,players,match,

→˓substitutions'
}

The default feeds for a “local” getter are:

{
'competitions': 'competitions.json',
'seasons': 'seasons_{competition_id}.json',
'games': 'matches_{season_id}.json',
'events': 'matches/events_{game_id}.json',

}

• creds (dict, optional) – Login credentials in the format {“user”: “”, “passwd”: “”}.
Only used when getter is “remote”.

Methods

__init__

competitions Return a dataframe with all available competitions
and seasons.

events Return a dataframe with the event stream of a game.
games Return a dataframe with all available games in a sea-

son.
players Return a dataframe with all players that participated

in a game.
teams Return a dataframe with both teams that participated

in a game.

54 Chapter 7. socceraction.data

socceraction, Release 1.5.1

socceraction.data.wyscout.WyscoutLoader.__init__

WyscoutLoader.__init__(root='https://apirest.wyscout.com/v2/', getter='remote', feeds=None,
creds=None)

socceraction.data.wyscout.WyscoutLoader.competitions

WyscoutLoader.competitions(competition_id=None)
Return a dataframe with all available competitions and seasons.

Parameters
competition_id (int, optional) – The ID of the competition.

Raises
ParseError – When the raw data does not adhere to the expected format.

Returns
A dataframe containing all available competitions and seasons. See
WyscoutCompetitionSchema for the schema.

Return type
pd.DataFrame

socceraction.data.wyscout.WyscoutLoader.events

WyscoutLoader.events(game_id)
Return a dataframe with the event stream of a game.

Parameters
game_id (int) – The ID of the game.

Raises
ParseError – When the raw data does not adhere to the expected format.

Returns
A dataframe containing the event stream. See WyscoutEventSchema for the schema.

Return type
pd.DataFrame

socceraction.data.wyscout.WyscoutLoader.games

WyscoutLoader.games(competition_id, season_id)
Return a dataframe with all available games in a season.

Parameters

• competition_id (int) – The ID of the competition.

• season_id (int) – The ID of the season.

Raises
ParseError – When the raw data does not adhere to the expected format.

Returns
A dataframe containing all available games. See WyscoutGameSchema for the schema.

7.4. socceraction.data.wyscout 55

socceraction, Release 1.5.1

Return type
pd.DataFrame

socceraction.data.wyscout.WyscoutLoader.players

WyscoutLoader.players(game_id)
Return a dataframe with all players that participated in a game.

Parameters
game_id (int) – The ID of the game.

Raises
ParseError – When the raw data does not adhere to the expected format.

Returns
A dataframe containing all players. See WyscoutPlayerSchema for the schema.

Return type
pd.DataFrame

socceraction.data.wyscout.WyscoutLoader.teams

WyscoutLoader.teams(game_id)
Return a dataframe with both teams that participated in a game.

Parameters
game_id (int) – The ID of the game.

Raises
ParseError – When the raw data does not adhere to the expected format.

Returns
A dataframe containing both teams. See WyscoutTeamSchema for the schema.

Return type
pd.DataFrame

socceraction.data.wyscout.PublicWyscoutLoader

class socceraction.data.wyscout.PublicWyscoutLoader(root=None, download=False)
Load the public Wyscout dataset.

This dataset is a public release of event stream data, collected by Wyscout (https://wyscout.com/) containing all
matches of the 2017/18 season of the top-5 European leagues (La Liga, Serie A, Bundesliga, Premier League,
Ligue 1), the FIFA World Cup 2018, and UEFA Euro Cup 2016. For a detailed description, see Pappalardo et
al.1.

Parameters

• root (str) – Path where a local copy of the dataset is stored or where the downloaded dataset
should be stored.

• download (bool) – Whether to force a redownload of the data.
1 Pappalardo, L., Cintia, P., Rossi, A. et al. A public data set of spatio-temporal match events in soccer competitions. Sci Data 6, 236 (2019).

https://doi.org/10.1038/s41597-019-0247-7

56 Chapter 7. socceraction.data

https://wyscout.com/
https://doi.org/10.1038/s41597-019-0247-7

socceraction, Release 1.5.1

References

Methods

__init__

competitions Return a dataframe with all available competitions
and seasons.

events Return a dataframe with the event stream of a game.
games Return a dataframe with all available games in a sea-

son.
players Return a dataframe with all players that participated

in a game.
teams Return a dataframe with both teams that participated

in a game.

socceraction.data.wyscout.PublicWyscoutLoader.__init__

PublicWyscoutLoader.__init__(root=None, download=False)

socceraction.data.wyscout.PublicWyscoutLoader.competitions

PublicWyscoutLoader.competitions()

Return a dataframe with all available competitions and seasons.

Returns
A dataframe containing all available competitions and seasons. See
WyscoutCompetitionSchema for the schema.

Return type
pd.DataFrame

socceraction.data.wyscout.PublicWyscoutLoader.events

PublicWyscoutLoader.events(game_id)
Return a dataframe with the event stream of a game.

Parameters
game_id (int) – The ID of the game.

Returns
A dataframe containing the event stream. See WyscoutEventSchema for the schema.

Return type
pd.DataFrame

7.4. socceraction.data.wyscout 57

socceraction, Release 1.5.1

socceraction.data.wyscout.PublicWyscoutLoader.games

PublicWyscoutLoader.games(competition_id, season_id)
Return a dataframe with all available games in a season.

Parameters

• competition_id (int) – The ID of the competition.

• season_id (int) – The ID of the season.

Returns
A dataframe containing all available games. See WyscoutGameSchema for the schema.

Return type
pd.DataFrame

socceraction.data.wyscout.PublicWyscoutLoader.players

PublicWyscoutLoader.players(game_id)
Return a dataframe with all players that participated in a game.

Parameters
game_id (int) – The ID of the game.

Returns
A dataframe containing all players. See WyscoutPlayerSchema for the schema.

Return type
pd.DataFrame

socceraction.data.wyscout.PublicWyscoutLoader.teams

PublicWyscoutLoader.teams(game_id)
Return a dataframe with both teams that participated in a game.

Parameters
game_id (int) – The ID of the game.

Returns
A dataframe containing both teams. See WyscoutTeamSchema for the schema.

Return type
pd.DataFrame

58 Chapter 7. socceraction.data

socceraction, Release 1.5.1

7.4.2 Schema

socceraction.data.wyscout.
WyscoutCompetitionSchema

Definition of a dataframe containing a list of competi-
tions and seasons.

socceraction.data.wyscout.
WyscoutTeamSchema

Definition of a dataframe containing the list of players of
a game.

socceraction.data.wyscout.
WyscoutPlayerSchema

Definition of a dataframe containing the list of teams of
a game.

socceraction.data.wyscout.
WyscoutGameSchema

Definition of a dataframe containing a list of games.

socceraction.data.wyscout.
WyscoutEventSchema

Definition of a dataframe containing event stream data
of a game.

socceraction.data.wyscout.WyscoutCompetitionSchema

class socceraction.data.wyscout.WyscoutCompetitionSchema(*args, **kwargs)
Definition of a dataframe containing a list of competitions and seasons.

Attributes

competition_gender

competition_id The unique identifier for the competition.
competition_name The name of the competition.
country_name

season_id The unique identifier for the season.
season_name The name of the season.

socceraction.data.wyscout.WyscoutTeamSchema

class socceraction.data.wyscout.WyscoutTeamSchema(*args, **kwargs)
Definition of a dataframe containing the list of players of a game.

Attributes

team_id The unique identifier for the team.
team_name The name of the team.
team_name_short

7.4. socceraction.data.wyscout 59

socceraction, Release 1.5.1

socceraction.data.wyscout.WyscoutPlayerSchema

class socceraction.data.wyscout.WyscoutPlayerSchema(*args, **kwargs)
Definition of a dataframe containing the list of teams of a game.

Attributes

birth_date

firstname

game_id The unique identifier for the game.
is_starter Whether the player is in the starting lineup.
jersey_number The player's jersey number.
lastname

minutes_played The number of minutes the player played in the game.
nickname

player_id The unique identifier for the player.
player_name The name of the player.
team_id The unique identifier for the player's team.

socceraction.data.wyscout.WyscoutGameSchema

class socceraction.data.wyscout.WyscoutGameSchema(*args, **kwargs)
Definition of a dataframe containing a list of games.

Attributes

away_team_id The unique identifier for the away team in this game.
competition_id The unique identifier for the competition.
game_date The date when the game was played.
game_day Number corresponding to the weeks or rounds into

the competition this game is.
game_id The unique identifier for the game.
home_team_id The unique identifier for the home team in this game.
season_id The unique identifier for the season.

60 Chapter 7. socceraction.data

socceraction, Release 1.5.1

socceraction.data.wyscout.WyscoutEventSchema

class socceraction.data.wyscout.WyscoutEventSchema(*args, **kwargs)
Definition of a dataframe containing event stream data of a game.

Attributes

event_id The unique identifier for the event.
game_id The unique identifier for the game.
milliseconds

period_id The unique identifier for the part of the game in which
the event took place.

player_id The unique identifier for the player this event relates
to.

positions

subtype_id

subtype_name

tags

team_id The unique identifier for the team this event relates
to.

type_id The unique identifier for the type of this event.
type_name The name of the type of this event.

7.4. socceraction.data.wyscout 61

socceraction, Release 1.5.1

62 Chapter 7. socceraction.data

CHAPTER

EIGHT

SOCCERACTION.SPADL

Implementation of the SPADL language.

8.1 Converters

socceraction.spadl.statsbomb.
convert_to_actions

Convert StatsBomb events to SPADL actions.

socceraction.spadl.opta.convert_to_actions Convert Opta events to SPADL actions.
socceraction.spadl.wyscout.
convert_to_actions

Convert Wyscout events to SPADL actions.

socceraction.spadl.kloppy.
convert_to_actions

Convert a Kloppy event data set to SPADL actions.

8.1.1 socceraction.spadl.statsbomb.convert_to_actions

socceraction.spadl.statsbomb.convert_to_actions(events, home_team_id, xy_fidelity_version=None,
shot_fidelity_version=None)

Convert StatsBomb events to SPADL actions.

Parameters

• events (pd.DataFrame) – DataFrame containing StatsBomb events from a single game.

• home_team_id (int) – ID of the home team in the corresponding game.

• xy_fidelity_version (int, optional) – Whether low or high fidelity coordinates are
used in the event data. If not specified, the fidelity version is inferred from the data.

• shot_fidelity_version (int, optional) – Whether low or high fidelity coordinates
are used in the event data for shots. If not specified, the fidelity version is inferred from the
data.

Returns
actions – DataFrame with corresponding SPADL actions.

Return type
pd.DataFrame

63

socceraction, Release 1.5.1

8.1.2 socceraction.spadl.opta.convert_to_actions

socceraction.spadl.opta.convert_to_actions(events, home_team_id)
Convert Opta events to SPADL actions.

Parameters

• events (pd.DataFrame) – DataFrame containing Opta events from a single game.

• home_team_id (int) – ID of the home team in the corresponding game.

Returns
actions – DataFrame with corresponding SPADL actions.

Return type
pd.DataFrame

8.1.3 socceraction.spadl.wyscout.convert_to_actions

socceraction.spadl.wyscout.convert_to_actions(events, home_team_id)
Convert Wyscout events to SPADL actions.

Parameters

• events (pd.DataFrame) – DataFrame containing Wyscout events from a single game.

• home_team_id (int) – ID of the home team in the corresponding game.

Returns
actions – DataFrame with corresponding SPADL actions.

Return type
pd.DataFrame

8.1.4 socceraction.spadl.kloppy.convert_to_actions

socceraction.spadl.kloppy.convert_to_actions(dataset, game_id=None)
Convert a Kloppy event data set to SPADL actions.

Parameters

• dataset (EventDataset) – A Kloppy event data set.

• game_id (str or int, optional) – The identifier of the game. If not provided, the game
id will not be set in the SPADL DataFrame.

Returns
actions – DataFrame with corresponding SPADL actions.

Return type
pd.DataFrame

64 Chapter 8. socceraction.spadl

socceraction, Release 1.5.1

8.2 Schema

socceraction.spadl.SPADLSchema Definition of a SPADL dataframe.

8.2.1 socceraction.spadl.SPADLSchema

class socceraction.spadl.SPADLSchema(*args, **kwargs)
Definition of a SPADL dataframe.

Attributes

action_id

bodypart_id

bodypart_name

end_x

end_y

game_id

original_event_id

period_id

player_id

result_id

result_name

start_x

start_y

team_id

time_seconds

type_id

type_name

8.2. Schema 65

socceraction, Release 1.5.1

8.3 Config

socceraction.spadl.config.field_length Convert a string or number to a floating point number, if
possible.

socceraction.spadl.config.field_width Convert a string or number to a floating point number, if
possible.

socceraction.spadl.config.actiontypes Built-in mutable sequence.
socceraction.spadl.config.bodyparts Built-in mutable sequence.
socceraction.spadl.config.results Built-in mutable sequence.

8.3.1 socceraction.spadl.config.field_length

socceraction.spadl.config.field_length: float = 105.0

Convert a string or number to a floating point number, if possible.

8.3.2 socceraction.spadl.config.field_width

socceraction.spadl.config.field_width: float = 68.0

Convert a string or number to a floating point number, if possible.

8.3.3 socceraction.spadl.config.actiontypes

socceraction.spadl.config.actiontypes: list[str] = ['pass', 'cross', 'throw_in',
'freekick_crossed', 'freekick_short', 'corner_crossed', 'corner_short', 'take_on',
'foul', 'tackle', 'interception', 'shot', 'shot_penalty', 'shot_freekick', 'keeper_save',
'keeper_claim', 'keeper_punch', 'keeper_pick_up', 'clearance', 'bad_touch', 'non_action',
'dribble', 'goalkick']

Built-in mutable sequence.

If no argument is given, the constructor creates a new empty list. The argument must be an iterable if specified.

8.3.4 socceraction.spadl.config.bodyparts

socceraction.spadl.config.bodyparts: list[str] = ['foot', 'head', 'other', 'head/other',
'foot_left', 'foot_right']

Built-in mutable sequence.

If no argument is given, the constructor creates a new empty list. The argument must be an iterable if specified.

66 Chapter 8. socceraction.spadl

socceraction, Release 1.5.1

8.3.5 socceraction.spadl.config.results

socceraction.spadl.config.results: list[str] = ['fail', 'success', 'offside', 'owngoal',
'yellow_card', 'red_card']

Built-in mutable sequence.

If no argument is given, the constructor creates a new empty list. The argument must be an iterable if specified.

8.4 Utility functions

socceraction.spadl.play_left_to_right Perform all action in the same playing direction.
socceraction.spadl.add_names Add the type name, result name and bodypart name to a

SPADL dataframe.
socceraction.spadl.actiontypes_df Return a dataframe with the type id and type name of

each SPADL action type.
socceraction.spadl.bodyparts_df Return a dataframe with the bodypart id and bodypart

name of each SPADL action type.
socceraction.spadl.results_df Return a dataframe with the result id and result name of

each SPADL action type.

8.4.1 socceraction.spadl.play_left_to_right

socceraction.spadl.play_left_to_right(actions, home_team_id)
Perform all action in the same playing direction.

This changes the start and end location of each action, such that all actions are performed as if the team that
executes the action plays from left to right.

Parameters

• actions (pd.DataFrame) – The SPADL actins of a game.

• home_team_id (int) – The ID of the home team.

Returns
All actions performed left to right.

Return type
list(pd.DataFrame)

See also:

socceraction.vaep.features.play_left_to_right
For transforming gamestates.

8.4. Utility functions 67

socceraction, Release 1.5.1

8.4.2 socceraction.spadl.add_names

socceraction.spadl.add_names(actions)
Add the type name, result name and bodypart name to a SPADL dataframe.

Parameters
actions (pd.DataFrame) – A SPADL dataframe.

Returns
The original dataframe with a ‘type_name’, ‘result_name’ and ‘bodypart_name’ appended.

Return type
pd.DataFrame

8.4.3 socceraction.spadl.actiontypes_df

socceraction.spadl.actiontypes_df()

Return a dataframe with the type id and type name of each SPADL action type.

Returns
The ‘type_id’ and ‘type_name’ of each SPADL action type.

Return type
pd.DataFrame

8.4.4 socceraction.spadl.bodyparts_df

socceraction.spadl.bodyparts_df()

Return a dataframe with the bodypart id and bodypart name of each SPADL action type.

Returns
The ‘bodypart_id’ and ‘bodypart_name’ of each SPADL action type.

Return type
pd.DataFrame

8.4.5 socceraction.spadl.results_df

socceraction.spadl.results_df()

Return a dataframe with the result id and result name of each SPADL action type.

Returns
The ‘result_id’ and ‘result_name’ of each SPADL action type.

Return type
pd.DataFrame

68 Chapter 8. socceraction.spadl

CHAPTER

NINE

SOCCERACTION.XTHREAT

Implements the xT framework.

9.1 Model

socceraction.xthreat.ExpectedThreat An implementation of the Expected Threat (xT) model.

9.1.1 socceraction.xthreat.ExpectedThreat

class socceraction.xthreat.ExpectedThreat(l=16, w=12, eps=1e-05)
An implementation of the Expected Threat (xT) model.

The xT model1 can be used to value actions that successfully move the ball between two locations on the pitch by
computing the difference between the long-term probability of scoring on the start and end location of an action.

Parameters

• l (int) – Amount of grid cells in the x-dimension of the grid.

• w (int) – Amount of grid cells in the y-dimension of the grid.

• eps (float) – The desired precision to calculate the xT value of a cell. Default is 5 decimal
places of precision (1e-5).

l

Amount of grid cells in the x-dimension of the grid.

Type
int

w

Amount of grid cells in the y-dimension of the grid.

Type
int

eps

The desired precision to calculate the xT value of a cell. Default is 5 decimal places of precision (1e-5).

Type
float

1 Singh, Karun. “Introducing Expected Threat (xT).” 15 February, 2019. https://karun.in/blog/expected-threat.html

69

https://karun.in/blog/expected-threat.html

socceraction, Release 1.5.1

heatmaps

The i-th element corresponds to the xT value surface after i iterations.

Type
list(np.ndarray)

xT

The final xT value surface.

Type
np.ndarray

scoring_prob_matrix

The probability of scoring when taking a shot for each cell.

Type
np.ndarray, shape(M,N)

shot_prob_matrix

The probability of choosing to shoot for each cell.

Type
np.ndarray, shape(M,N)

move_prob_matrix

The probability of choosing to move for each cell.

Type
np.ndarray, shape(M,N)

transition_matrix

When moving, the probability of moving to each of the other zones.

Type
np.ndarray, shape(M*N,M*N)

References

Methods

__init__

fit Fits the xT model with the given actions.
interpolator Interpolate over the pitch.
rate Compute the xT values for the given actions.
save_model Save the xT value surface in JSON format.

70 Chapter 9. socceraction.xthreat

socceraction, Release 1.5.1

socceraction.xthreat.ExpectedThreat.__init__

ExpectedThreat.__init__(l=16, w=12, eps=1e-05)

socceraction.xthreat.ExpectedThreat.fit

ExpectedThreat.fit(actions)
Fits the xT model with the given actions.

Parameters
actions (pd.DataFrame) – Actions, in SPADL format.

Returns
Fitted xT model.

Return type
self

socceraction.xthreat.ExpectedThreat.interpolator

ExpectedThreat.interpolator(kind='linear')
Interpolate over the pitch.

This is a wrapper around scipy.interpolate.interp2d().

Parameters
kind ({'linear', 'cubic', 'quintic'} # noqa: DAR103) – The kind of spline interpo-
lation to use. Default is ‘linear’.

Raises
ImportError – If scipy is not installed.

Returns
A function that interpolates xT values over the pitch.

Return type
callable

socceraction.xthreat.ExpectedThreat.rate

ExpectedThreat.rate(actions, use_interpolation=False)
Compute the xT values for the given actions.

xT should only be used to value actions that move the ball and also keep the current team in possession of
the ball. All other actions in the given dataframe receive a NaN rating.

Parameters

• actions (pd.DataFrame) – Actions, in SPADL format.

• use_interpolation (bool) – Indicates whether to use bilinear interpolation when infer-
ring xT values. Note that this requires Scipy to be installed (pip install scipy).

Raises
NotFittedError – If the model has not been fitted yet.

Returns
The xT value for each action.

9.1. Model 71

socceraction, Release 1.5.1

Return type
np.ndarray

socceraction.xthreat.ExpectedThreat.save_model

ExpectedThreat.save_model(filepath, overwrite=True)
Save the xT value surface in JSON format.

This stores only the xT value surface, which is all you need to compute xT values for new data. The value
surface can be loaded back with the socceraction.xthreat.load_model() function.

Pickle the ExpectedThreat instance to store the entire model and to retain the transition, shot probability,
move probability and scoring probability matrices.

Raises

• NotFittedError – If the model has not been fitted yet.

• ValueError – If the specified output file already exists and “overwrite” is set to False.

Parameters

• filepath (str) – Path to the file to save the value surface to.

• overwrite (bool) – Whether to silently overwrite any existing file at the target location.

Return type
None

9.2 Utility functions

socceraction.xthreat.load_model Create a model from a pre-computed xT value surface.
socceraction.xthreat.get_move_actions Get all ball-progressing actions.
socceraction.xthreat.
get_successful_move_actions

Get all successful ball-progressing actions.

socceraction.xthreat.scoring_prob Compute the probability of scoring when taking a shot
for each cell.

socceraction.xthreat.action_prob Compute the probability of taking an action in each cell
of the grid.

socceraction.xthreat.
move_transition_matrix

Compute the move transition matrix from the given ac-
tions.

9.2.1 socceraction.xthreat.load_model

socceraction.xthreat.load_model(path)
Create a model from a pre-computed xT value surface.

The value surface should be provided as a JSON file containing a 2D matrix. Karun Singh provides such a grid
at the follwing url: https://karun.in/blog/data/open_xt_12x8_v1.json

Parameters
path (str) – Any valid string path is acceptable. The string could be a URL. Valid URL schemes
include http, ftp, s3, and file.

72 Chapter 9. socceraction.xthreat

https://karun.in/blog/data/open_xt_12x8_v1.json

socceraction, Release 1.5.1

Returns
An xT model that uses the given value surface to value actions.

Return type
ExpectedThreat

9.2.2 socceraction.xthreat.get_move_actions

socceraction.xthreat.get_move_actions(actions)
Get all ball-progressing actions.

These include passes, dribbles and crosses. Take-ons are ignored because they typically coincide with dribbles
and do not move the ball to a different cell.

Parameters
actions (pd.DataFrame) – Actions, in SPADL format.

Returns
All ball-progressing actions in the input dataframe.

Return type
pd.DataFrame

9.2.3 socceraction.xthreat.get_successful_move_actions

socceraction.xthreat.get_successful_move_actions(actions)
Get all successful ball-progressing actions.

These include successful passes, dribbles and crosses.

Parameters
actions (pd.DataFrame) – Actions, in SPADL format.

Returns
All ball-progressing actions in the input dataframe.

Return type
pd.DataFrame

9.2.4 socceraction.xthreat.scoring_prob

socceraction.xthreat.scoring_prob(actions, l=16, w=12)
Compute the probability of scoring when taking a shot for each cell.

Parameters

• actions (pd.DataFrame) – Actions, in SPADL format.

• l (int) – Amount of grid cells in the x-dimension of the grid.

• w (int) – Amount of grid cells in the y-dimension of the grid.

Returns
A matrix, denoting the probability of scoring for each cell.

Return type
np.ndarray

9.2. Utility functions 73

socceraction, Release 1.5.1

9.2.5 socceraction.xthreat.action_prob

socceraction.xthreat.action_prob(actions, l=16, w=12)
Compute the probability of taking an action in each cell of the grid.

The options are: shooting or moving.

Parameters

• actions (pd.DataFrame) – Actions, in SPADL format.

• l (int) – Amount of grid cells in the x-dimension of the grid.

• w (int) – Amount of grid cells in the y-dimension of the grid.

Return type
tuple[ndarray[Any, dtype[float64]], ndarray[Any, dtype[float64]]]

Returns

• shotmatrix (np.ndarray) – For each cell the probability of choosing to shoot.

• movematrix (np.ndarray) – For each cell the probability of choosing to move.

9.2.6 socceraction.xthreat.move_transition_matrix

socceraction.xthreat.move_transition_matrix(actions, l=16, w=12)
Compute the move transition matrix from the given actions.

This is, when a player chooses to move, the probability that he will end up in each of the other cells of the grid
successfully.

Parameters

• actions (pd.DataFrame) – Actions, in SPADL format.

• l (int) – Amount of grid cells in the x-dimension of the grid.

• w (int) – Amount of grid cells in the y-dimension of the grid.

Returns
The transition matrix.

Return type
np.ndarray

74 Chapter 9. socceraction.xthreat

CHAPTER

TEN

SOCCERACTION.VAEP

Implements the VAEP framework.

10.1 Model

socceraction.vaep.VAEP An implementation of the VAEP framework.

10.1.1 socceraction.vaep.VAEP

class socceraction.vaep.VAEP(xfns=None, nb_prev_actions=3)
An implementation of the VAEP framework.

VAEP (Valuing Actions by Estimating Probabilities)1 defines the problem of valuing a soccer player’s contribu-
tions within a match as a binary classification problem and rates actions by estimating its effect on the short-term
probablities that a team will both score and concede.

Parameters

• xfns (list) – List of feature transformers (see socceraction.vaep.features) used to
describe the game states. Uses xfns_default if None.

• nb_prev_actions (int, default=3 # noqa: DAR103) – Number of previous actions
used to decscribe the game state.

References

1 Tom Decroos, Lotte Bransen, Jan Van Haaren, and Jesse Davis. “Actions speak louder than goals: Valuing player actions in soccer.” In
Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, pp. 1851-1861. 2019.

75

socceraction, Release 1.5.1

Methods

__init__

compute_features Transform actions to the feature-based representation
of game states.

compute_labels Compute the labels for each game state in the given
game.

fit Fit the model according to the given training data.
rate Compute the VAEP rating for the given game states.
score Evaluate the fit of the model on the given test data and

labels.

socceraction.vaep.VAEP.__init__

VAEP.__init__(xfns=None, nb_prev_actions=3)

socceraction.vaep.VAEP.compute_features

VAEP.compute_features(game, game_actions)
Transform actions to the feature-based representation of game states.

Parameters

• game (pd.Series) – The SPADL representation of a single game.

• game_actions (pd.DataFrame) – The actions performed during game in the SPADL
representation.

Returns
features – Returns the feature-based representation of each game state in the game.

Return type
pd.DataFrame

socceraction.vaep.VAEP.compute_labels

VAEP.compute_labels(game, game_actions)
Compute the labels for each game state in the given game.

Parameters

• game (pd.Series) – The SPADL representation of a single game.

• game_actions (pd.DataFrame) – The actions performed during game in the SPADL
representation.

Returns
labels – Returns the labels of each game state in the game.

Return type
pd.DataFrame

76 Chapter 10. socceraction.vaep

socceraction, Release 1.5.1

socceraction.vaep.VAEP.fit

VAEP.fit(X, y, learner='xgboost', val_size=0.25, tree_params=None, fit_params=None)
Fit the model according to the given training data.

Parameters

• X (pd.DataFrame) – Feature representation of the game states.

• y (pd.DataFrame) – Scoring and conceding labels for each game state.

• learner (string, default='xgboost' # noqa: DAR103) – Gradient boosting im-
plementation which should be used to learn the model. The supported learners are ‘xg-
boost’, ‘catboost’ and ‘lightgbm’.

• val_size (float, default=0.25 # noqa: DAR103) – Percentage of the dataset that
will be used as the validation set for early stopping. When zero, no validation data will be
used.

• tree_params (dict) – Parameters passed to the constructor of the learner.

• fit_params (dict) – Parameters passed to the fit method of the learner.

Raises
ValueError – If one of the features is missing in the provided dataframe.

Returns
Fitted VAEP model.

Return type
self

socceraction.vaep.VAEP.rate

VAEP.rate(game, game_actions, game_states=None)
Compute the VAEP rating for the given game states.

Parameters

• game (pd.Series) – The SPADL representation of a single game.

• game_actions (pd.DataFrame) – The actions performed during game in the SPADL
representation.

• game_states (pd.DataFrame, default=None) – DataFrame with the game state rep-
resentation of each action. If None, these will be computed on-th-fly.

Raises
NotFittedError – If the model is not fitted yet.

Returns
ratings – Returns the VAEP rating for each given action, as well as the offensive and defensive
value of each action.

Return type
pd.DataFrame

10.1. Model 77

socceraction, Release 1.5.1

socceraction.vaep.VAEP.score

VAEP.score(X, y)
Evaluate the fit of the model on the given test data and labels.

Parameters

• X (pd.DataFrame) – Feature representation of the game states.

• y (pd.DataFrame) – Scoring and conceding labels for each game state.

Raises
NotFittedError – If the model is not fitted yet.

Returns
score – The Brier and AUROC scores for both binary classification problems.

Return type
dict

10.2 Utility functions

socceraction.vaep.features Implements the feature tranformers of the VAEP frame-
work.

socceraction.vaep.labels Implements the label tranformers of the VAEP frame-
work.

socceraction.vaep.formula Implements the formula of the VAEP framework.

10.2.1 socceraction.vaep.features

Implements the feature tranformers of the VAEP framework.

socceraction.vaep.features.actiontype(actions)
Get the type of each action.

Parameters
actions (Actions) – The actions of a game.

Returns
The ‘type_id’ of each action.

Return type
Features

socceraction.vaep.features.actiontype_onehot(actions)
Get the one-hot-encoded type of each action.

Parameters
actions (SPADLActions) – The actions of a game.

Returns
A one-hot encoding of each action’s type.

Return type
Features

78 Chapter 10. socceraction.vaep

socceraction, Release 1.5.1

socceraction.vaep.features.actiontype_result_onehot(actions)
Get a one-hot encoding of the combination between the type and result of each action.

Parameters
actions (SPADLActions) – The actions of a game.

Returns
The one-hot encoding of each action’s type and result.

Return type
Features

socceraction.vaep.features.bodypart(actions)
Get the body part used to perform each action.

This feature generator does not distinguish between the left and right foot.

Parameters
actions (Actions) – The actions of a game.

Returns
The ‘bodypart_id’ of each action.

Return type
Features

See also:

bodypart_detailed
An alternative version that splits between the left and right foot.

socceraction.vaep.features.bodypart_detailed(actions)
Get the body part with split by foot used to perform each action.

This feature generator distinguishes between the left and right foot, if supported by the dataprovider.

Parameters
actions (Actions) – The actions of a game.

Returns
The ‘bodypart_id’ of each action.

Return type
Features

See also:

bodypart
An alternative version that does not split between the left and right foot.

socceraction.vaep.features.bodypart_detailed_onehot(actions)
Get the one-hot-encoded bodypart with split by foot of each action.

This feature generator distinguishes between the left and right foot, if supported by the dataprovider.

Parameters
actions (Actions) – The actions of a game.

Returns
The one-hot encoding of each action’s bodypart.

10.2. Utility functions 79

socceraction, Release 1.5.1

Return type
Features

See also:

bodypart_onehot
An alternative version that does not split between the left and right foot.

socceraction.vaep.features.bodypart_onehot(actions)
Get the one-hot-encoded bodypart of each action.

This feature generator does not distinguish between the left and right foot.

Parameters
actions (Actions) – The actions of a game.

Returns
The one-hot encoding of each action’s bodypart.

Return type
Features

See also:

bodypart_detailed_onehot
An alternative version that splits between the left and right foot.

socceraction.vaep.features.endlocation(actions)
Get the location where each action ended.

Parameters
actions (SPADLActions) – The actions of a game.

Returns
The ‘end_x’ and ‘end_y’ location of each action.

Return type
Features

socceraction.vaep.features.endpolar(actions)
Get the polar coordinates of each action’s end location.

The center of the opponent’s goal is used as the origin.

Parameters
actions (SPADLActions) – The actions of a game.

Returns
The ‘end_dist_to_goal’ and ‘end_angle_to_goal’ of each action.

Return type
Features

socceraction.vaep.features.feature_column_names(fs, nb_prev_actions=3)
Return the names of the features generated by a list of transformers.

Parameters

• fs (list(callable)) – A list of feature transformers.

• nb_prev_actions (int, default=3 # noqa: DAR103) – The number of previous ac-
tions included in the game state.

80 Chapter 10. socceraction.vaep

socceraction, Release 1.5.1

Returns
The name of each generated feature.

Return type
list(str)

socceraction.vaep.features.gamestates(actions, nb_prev_actions=3)
Convert a dataframe of actions to gamestates.

Each gamestate is represented as the <nb_prev_actions> previous actions.

The list of gamestates is internally represented as a list of actions dataframes [𝑎0, 𝑎1, . . .] where each row in the
a_i dataframe contains the previous action of the action in the same row in the 𝑎𝑖−1 dataframe.

Parameters

• actions (Actions) – A DataFrame with the actions of a game.

• nb_prev_actions (int, default=3 # noqa: DAR103) – The number of previous ac-
tions included in the game state.

Raises
ValueError – If the number of actions is smaller 1.

Returns
The <nb_prev_actions> previous actions for each action.

Return type
GameStates

socceraction.vaep.features.goalscore(gamestates)
Get the number of goals scored by each team after the action.

Parameters
gamestates (GameStates) – The gamestates of a game.

Returns
The number of goals scored by the team performing the last action of the game state
(‘goalscore_team’), by the opponent (‘goalscore_opponent’), and the goal difference between
both teams (‘goalscore_diff’).

Return type
Features

socceraction.vaep.features.movement(actions)
Get the distance covered by each action.

Parameters
actions (SPADLActions) – The actions of a game.

Returns
The horizontal (‘dx’), vertical (‘dy’) and total (‘movement’) distance covered by each action.

Return type
Features

socceraction.vaep.features.play_left_to_right(gamestates, home_team_id)
Perform all actions in a gamestate in the same playing direction.

This changes the start and end location of each action in a gamestate, such that all actions are performed as if the
team that performs the first action in the gamestate plays from left to right.

Parameters

10.2. Utility functions 81

socceraction, Release 1.5.1

• gamestates (GameStates) – The game states of a game.

• home_team_id (int) – The ID of the home team.

Returns
The game states with all actions performed left to right.

Return type
GameStates

See also:

socceraction.vaep.features.play_left_to_right
For transforming actions.

socceraction.vaep.features.player_possession_time(actions)
Get the time (sec) a player was in ball possession before attempting the action.

We only look at the dribble preceding the action and reset the possession time after a defensive interception
attempt or a take-on.

Parameters
actions (SPADLActions) – The actions of a game.

Returns
The ‘player_possession_time’ of each action.

Return type
Features

socceraction.vaep.features.result(actions)
Get the result of each action.

Parameters
actions (SPADLActions) – The actions of a game.

Returns
The ‘result_id’ of each action.

Return type
Features

socceraction.vaep.features.result_onehot(actions)
Get the one-hot-encode result of each action.

Parameters
actions (SPADLActions) – The actions of a game.

Returns
The one-hot encoding of each action’s result.

Return type
Features

socceraction.vaep.features.simple(actionfn)
Make a function decorator to apply actionfeatures to game states.

Parameters
actionfn (callable) – A feature transformer that operates on actions.

Returns
A feature transformer that operates on game states.

82 Chapter 10. socceraction.vaep

socceraction, Release 1.5.1

Return type
FeatureTransfomer

socceraction.vaep.features.space_delta(gamestates)
Get the distance covered between the last and previous actions.

Parameters
gamestates (GameStates) – The gamestates of a game.

Returns
A dataframe with a column for the horizontal (‘dx_a0i’), vertical (‘dy_a0i’) and total (‘mov_a0i’)
distance covered between each <nb_prev_actions> action ai and action a0.

Return type
Features

socceraction.vaep.features.speed(gamestates)
Get the speed at which the ball moved during the previous actions.

Parameters
gamestates (GameStates) – The game states of a game.

Returns
A dataframe with columns ‘speedx_a0i’, ‘speedy_a0i’, ‘speed_a0i’ for each <nb_prev_actions>
containing the ball speed in m/s between action ai and action a0.

Return type
Features

socceraction.vaep.features.startlocation(actions)
Get the location where each action started.

Parameters
actions (SPADLActions) – The actions of a game.

Returns
The ‘start_x’ and ‘start_y’ location of each action.

Return type
Features

socceraction.vaep.features.startpolar(actions)
Get the polar coordinates of each action’s start location.

The center of the opponent’s goal is used as the origin.

Parameters
actions (SPADLActions) – The actions of a game.

Returns
The ‘start_dist_to_goal’ and ‘start_angle_to_goal’ of each action.

Return type
Features

socceraction.vaep.features.team(gamestates)
Check whether the possession changed during the game state.

For each action in the game state, True if the team that performed the action is the same team that performed the
last action of the game state; otherwise False.

Parameters
gamestates (GameStates) – The game states of a game.

10.2. Utility functions 83

socceraction, Release 1.5.1

Returns
A dataframe with a column ‘team_ai’ for each <nb_prev_actions> indicating whether the team
that performed action a0 is in possession.

Return type
Features

socceraction.vaep.features.time(actions)
Get the time when each action was performed.

This generates the following features:

period_id
The ID of the period.

time_seconds
Seconds since the start of the period.

time_seconds_overall
Seconds since the start of the game. Stoppage time during previous periods is ignored.

Parameters
actions (Actions) – The actions of a game.

Returns
The ‘period_id’, ‘time_seconds’ and ‘time_seconds_overall’ when each action was performed.

Return type
Features

socceraction.vaep.features.time_delta(gamestates)
Get the number of seconds between the last and previous actions.

Parameters
gamestates (GameStates) – The game states of a game.

Returns
A dataframe with a column ‘time_delta_i’ for each <nb_prev_actions> containing the number of
seconds between action ai and action a0.

Return type
Features

10.2.2 socceraction.vaep.labels

Implements the label tranformers of the VAEP framework.

socceraction.vaep.labels.concedes(actions, nr_actions=10)
Determine whether the team possessing the ball conceded a goal within the next x actions.

Parameters

• actions (pd.DataFrame) – The actions of a game.

• nr_actions (int, default=10 # noqa: DAR103) – Number of actions after the cur-
rent action to consider.

Returns
A dataframe with a column ‘concedes’ and a row for each action set to True if a goal was conceded
by the team possessing the ball within the next x actions; otherwise False.

84 Chapter 10. socceraction.vaep

socceraction, Release 1.5.1

Return type
pd.DataFrame

socceraction.vaep.labels.goal_from_shot(actions)
Determine whether a goal was scored from the current action.

This label can be use to train an xG model.

Parameters
actions (pd.DataFrame) – The actions of a game.

Returns
A dataframe with a column ‘goal’ and a row for each action set to True if a goal was scored from
the current action; otherwise False.

Return type
pd.DataFrame

socceraction.vaep.labels.scores(actions, nr_actions=10)
Determine whether the team possessing the ball scored a goal within the next x actions.

Parameters

• actions (pd.DataFrame) – The actions of a game.

• nr_actions (int, default=10 # noqa: DAR103) – Number of actions after the cur-
rent action to consider.

Returns
A dataframe with a column ‘scores’ and a row for each action set to True if a goal was scored by
the team possessing the ball within the next x actions; otherwise False.

Return type
pd.DataFrame

10.2.3 socceraction.vaep.formula

Implements the formula of the VAEP framework.

socceraction.vaep.formula.defensive_value(actions, scores, concedes)
Compute the defensive value of each action.

VAEP defines the defensive value of an action as the change in conceding probability.

∆𝑃𝑐𝑜𝑛𝑐𝑒𝑑𝑒(𝑎𝑖, 𝑡) = 𝑃 𝑘
𝑐𝑜𝑛𝑐𝑒𝑑𝑒(𝑆𝑖, 𝑡)− 𝑃 𝑘

𝑐𝑜𝑛𝑐𝑒𝑑𝑒(𝑆𝑖−1, 𝑡)

where 𝑃𝑐𝑜𝑛𝑐𝑒𝑑𝑒(𝑆𝑖, 𝑡) is the probability that team 𝑡 which possesses the ball in state 𝑆𝑖 will concede in the next
10 actions.

Parameters

• actions (pd.DataFrame) – SPADL action.

• scores (pd.Series) – The probability of scoring from each corresponding game state.

• concedes (pd.Series) – The probability of conceding from each corresponding game
state.

Returns
The defensive value of each action.

10.2. Utility functions 85

socceraction, Release 1.5.1

Return type
pd.Series

socceraction.vaep.formula.offensive_value(actions, scores, concedes)
Compute the offensive value of each action.

VAEP defines the offensive value of an action as the change in scoring probability before and after the action.

∆𝑃𝑠𝑐𝑜𝑟𝑒(𝑎𝑖, 𝑡) = 𝑃 𝑘
𝑠𝑐𝑜𝑟𝑒(𝑆𝑖, 𝑡)− 𝑃 𝑘

𝑠𝑐𝑜𝑟𝑒(𝑆𝑖−1, 𝑡)

where 𝑃𝑠𝑐𝑜𝑟𝑒(𝑆𝑖, 𝑡) is the probability that team 𝑡 which possesses the ball in state 𝑆𝑖 will score in the next 10
actions.

Parameters

• actions (pd.DataFrame) – SPADL action.

• scores (pd.Series) – The probability of scoring from each corresponding game state.

• concedes (pd.Series) – The probability of conceding from each corresponding game
state.

Returns
The offensive value of each action.

Return type
pd.Series

socceraction.vaep.formula.value(actions, Pscores, Pconcedes)
Compute the offensive, defensive and VAEP value of each action.

The total VAEP value of an action is the difference between that action’s offensive value and defensive value.

𝑉𝑉 𝐴𝐸𝑃 (𝑎𝑖) = ∆𝑃𝑠𝑐𝑜𝑟𝑒(𝑎𝑖, 𝑡)−∆𝑃𝑐𝑜𝑛𝑐𝑒𝑑𝑒(𝑎𝑖, 𝑡)

Parameters

• actions (pd.DataFrame) – SPADL action.

• Pscores (pd.Series) – The probability of scoring from each corresponding game state.

• Pconcedes (pd.Series) – The probability of conceding from each corresponding game
state.

Returns
The ‘offensive_value’, ‘defensive_value’ and ‘vaep_value’ of each action.

Return type
pd.DataFrame

See also:

offensive_value()
The offensive value

defensive_value()
The defensive value

86 Chapter 10. socceraction.vaep

CHAPTER

ELEVEN

SOCCERACTION.ATOMIC.SPADL

11.1 Converters

socceraction.atomic.spadl.
convert_to_atomic

Convert regular SPADL actions to atomic actions.

11.1.1 socceraction.atomic.spadl.convert_to_atomic

socceraction.atomic.spadl.convert_to_atomic(actions)
Convert regular SPADL actions to atomic actions.

Parameters
actions (pd.DataFrame) – A SPADL dataframe.

Returns
The Atomic-SPADL dataframe.

Return type
pd.DataFrame

11.2 Schema

socceraction.atomic.spadl.
AtomicSPADLSchema

Definition of an Atomic-SPADL dataframe.

11.2.1 socceraction.atomic.spadl.AtomicSPADLSchema

class socceraction.atomic.spadl.AtomicSPADLSchema(*args, **kwargs)
Definition of an Atomic-SPADL dataframe.

87

socceraction, Release 1.5.1

Attributes

action_id

bodypart_id

bodypart_name

dx

dy

game_id

original_event_id

period_id

player_id

team_id

time_seconds

type_id

type_name

x

y

11.3 Config

socceraction.atomic.spadl.config.
field_length

Convert a string or number to a floating point number, if
possible.

socceraction.atomic.spadl.config.
field_width

Convert a string or number to a floating point number, if
possible.

socceraction.atomic.spadl.config.
actiontypes

Built-in mutable sequence.

socceraction.atomic.spadl.config.bodyparts Built-in mutable sequence.

88 Chapter 11. socceraction.atomic.spadl

socceraction, Release 1.5.1

11.3.1 socceraction.atomic.spadl.config.field_length

socceraction.atomic.spadl.config.field_length = 105.0

Convert a string or number to a floating point number, if possible.

11.3.2 socceraction.atomic.spadl.config.field_width

socceraction.atomic.spadl.config.field_width = 68.0

Convert a string or number to a floating point number, if possible.

11.3.3 socceraction.atomic.spadl.config.actiontypes

socceraction.atomic.spadl.config.actiontypes = ['pass', 'cross', 'throw_in',
'freekick_crossed', 'freekick_short', 'corner_crossed', 'corner_short', 'take_on',
'foul', 'tackle', 'interception', 'shot', 'shot_penalty', 'shot_freekick', 'keeper_save',
'keeper_claim', 'keeper_punch', 'keeper_pick_up', 'clearance', 'bad_touch', 'non_action',
'dribble', 'goalkick', 'receival', 'interception', 'out', 'offside', 'goal', 'owngoal',
'yellow_card', 'red_card', 'corner', 'freekick']

Built-in mutable sequence.

If no argument is given, the constructor creates a new empty list. The argument must be an iterable if specified.

11.3.4 socceraction.atomic.spadl.config.bodyparts

socceraction.atomic.spadl.config.bodyparts = ['foot', 'head', 'other', 'head/other',
'foot_left', 'foot_right']

Built-in mutable sequence.

If no argument is given, the constructor creates a new empty list. The argument must be an iterable if specified.

11.4 Utility functions

socceraction.atomic.spadl.
play_left_to_right

Perform all action in the same playing direction.

socceraction.atomic.spadl.add_names Add the type name, result name and bodypart name to
an Atomic-SPADL dataframe.

socceraction.atomic.spadl.actiontypes_df Return a dataframe with the type id and type name of
each Atomic-SPADL action type.

socceraction.atomic.spadl.bodyparts_df Return a dataframe with the bodypart id and bodypart
name of each SPADL action type.

11.4. Utility functions 89

socceraction, Release 1.5.1

11.4.1 socceraction.atomic.spadl.play_left_to_right

socceraction.atomic.spadl.play_left_to_right(actions, home_team_id)
Perform all action in the same playing direction.

This changes the location of each action, such that all actions are performed as if the team that executes the action
plays from left to right.

Parameters

• actions (pd.DataFrame) – The SPADL actins of a game.

• home_team_id (int) – The ID of the home team.

Returns
All actions performed left to right.

Return type
list(pd.DataFrame)

See also:

socceraction.atomic.vaep.features.play_left_to_right
For transforming gamestates.

11.4.2 socceraction.atomic.spadl.add_names

socceraction.atomic.spadl.add_names(actions)
Add the type name, result name and bodypart name to an Atomic-SPADL dataframe.

Parameters
actions (pd.DataFrame) – An Atomic-SPADL dataframe.

Returns
The original dataframe with a ‘type_name’, ‘result_name’ and ‘bodypart_name’ appended.

Return type
pd.DataFrame

11.4.3 socceraction.atomic.spadl.actiontypes_df

socceraction.atomic.spadl.actiontypes_df()

Return a dataframe with the type id and type name of each Atomic-SPADL action type.

Returns
The ‘type_id’ and ‘type_name’ of each Atomic-SPADL action type.

Return type
pd.DataFrame

90 Chapter 11. socceraction.atomic.spadl

socceraction, Release 1.5.1

11.4.4 socceraction.atomic.spadl.bodyparts_df

socceraction.atomic.spadl.bodyparts_df()

Return a dataframe with the bodypart id and bodypart name of each SPADL action type.

Returns
The ‘bodypart_id’ and ‘bodypart_name’ of each SPADL action type.

Return type
pd.DataFrame

11.4. Utility functions 91

socceraction, Release 1.5.1

92 Chapter 11. socceraction.atomic.spadl

CHAPTER

TWELVE

SOCCERACTION.ATOMIC.VAEP

Implements the Atomic-VAEP framework.

12.1 Model

socceraction.atomic.vaep.AtomicVAEP An implementation of the VAEP framework for atomic
actions.

12.1.1 socceraction.atomic.vaep.AtomicVAEP

class socceraction.atomic.vaep.AtomicVAEP(xfns=None, nb_prev_actions=3)
An implementation of the VAEP framework for atomic actions.

In contrast to the original VAEP framework1 this extension distinguishes the contribution of the player who
initiates the action (e.g., gives the pass) and the player who completes the action (e.g., receives the pass)2.

Parameters

• xfns (list) – List of feature transformers (see socceraction.atomic.vaep.features)
used to describe the game states. Uses xfns_default if None.

• nb_prev_actions (int, default=3) – Number of previous actions used to decscribe the
game state.

See also:

socceraction.vaep.VAEP
Implementation of the original VAEP framework.

1 Tom Decroos, Lotte Bransen, Jan Van Haaren, and Jesse Davis. “Actions speak louder than goals: Valuing player actions in soccer.” In
Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, pp. 1851-1861. 2019.

2 Tom Decroos, Pieter Robberechts and Jesse Davis. “Introducing Atomic-SPADL: A New Way to Represent Event Stream Data”. DTAI Sports
Analytics Blog. https://dtai.cs.kuleuven.be/sports/blog/introducing-atomic-spadl:-a-new-way-to-represent-event-stream-data # noqa May 2020.

93

https://dtai.cs.kuleuven.be/sports/blog/introducing-atomic-spadl:-a-new-way-to-represent-event-stream-data

socceraction, Release 1.5.1

References

Methods

__init__

socceraction.atomic.vaep.AtomicVAEP.__init__

AtomicVAEP.__init__(xfns=None, nb_prev_actions=3)

12.2 Utility functions

socceraction.atomic.vaep.features Implements the feature tranformers of the VAEP frame-
work.

socceraction.atomic.vaep.labels Implements the label tranformers of the Atomic-VAEP
framework.

socceraction.atomic.vaep.formula Implements the formula of the Atomic-VAEP frame-
work.

12.2.1 socceraction.atomic.vaep.features

Implements the feature tranformers of the VAEP framework.

socceraction.atomic.vaep.features.actiontype_onehot(actions)
Get the one-hot-encoded type of each action.

Parameters
actions (Actions) – The actions of a game.

Returns
A one-hot encoding of each action’s type.

Return type
Features

socceraction.atomic.vaep.features.direction(actions)
Get the direction of the action as components of the unit vector.

Parameters
actions (Actions) – The actions of a game.

Returns
The x-component (‘dx’) and y-compoment (‘mov_angle’) of the unit vector of each action.

Return type
Features

socceraction.atomic.vaep.features.feature_column_names(fs, nb_prev_actions=3)
Return the names of the features generated by a list of transformers.

Parameters

94 Chapter 12. socceraction.atomic.vaep

socceraction, Release 1.5.1

• fs (list(callable)) – A list of feature transformers.

• nb_prev_actions (int, default=3 # noqa: DAR103) – The number of previous ac-
tions included in the game state.

Returns
The name of each generated feature.

Return type
list(str)

socceraction.atomic.vaep.features.goalscore(gamestates)
Get the number of goals scored by each team after the action.

Parameters
gamestates (GameStates) – The gamestates of a game.

Returns
The number of goals scored by the team performing the last action of the game state
(‘goalscore_team’), by the opponent (‘goalscore_opponent’), and the goal difference between
both teams (‘goalscore_diff’).

Return type
Features

socceraction.atomic.vaep.features.location(actions)
Get the location where each action started.

Parameters
actions (Actions) – The actions of a game.

Returns
The ‘x’ and ‘y’ location of each action.

Return type
Features

socceraction.atomic.vaep.features.movement_polar(actions)
Get the distance covered and direction of each action.

Parameters
actions (Actions) – The actions of a game.

Returns
The distance covered (‘mov_d’) and direction (‘mov_angle’) of each action.

Return type
Features

socceraction.atomic.vaep.features.play_left_to_right(gamestates, home_team_id)
Perform all action in the same playing direction.

This changes the start and end location of each action, such that all actions are performed as if the team plays
from left to right.

Parameters

• gamestates (GameStates) – The game states of a game.

• home_team_id (int) – The ID of the home team.

Returns
The game states with all actions performed left to right.

12.2. Utility functions 95

socceraction, Release 1.5.1

Return type
list(pd.DataFrame)

socceraction.atomic.vaep.features.polar(actions)
Get the polar coordinates of each action’s start location.

The center of the opponent’s goal is used as the origin.

Parameters
actions (Actions) – The actions of a game.

Returns
The ‘dist_to_goal’ and ‘angle_to_goal’ of each action.

Return type
Features

12.2.2 socceraction.atomic.vaep.labels

Implements the label tranformers of the Atomic-VAEP framework.

socceraction.atomic.vaep.labels.concedes(actions, nr_actions=10)
Determine whether the team possessing the ball conceded a goal within the next x actions.

Parameters

• actions (pd.DataFrame) – The actions of a game.

• nr_actions (int, default=10 # noqa: DAR103) – Number of actions after the cur-
rent action to consider.

Returns
A dataframe with a column ‘concedes’ and a row for each action set to True if a goal was conceded
by the team possessing the ball within the next x actions; otherwise False.

Return type
pd.DataFrame

socceraction.atomic.vaep.labels.goal_from_shot(actions)
Determine whether a goal was scored from the current action.

This label can be use to train an xG model.

Parameters
actions (pd.DataFrame) – The actions of a game.

Returns
A dataframe with a column ‘goal’ and a row for each action set to True if a goal was scored from
the current action; otherwise False.

Return type
pd.DataFrame

socceraction.atomic.vaep.labels.scores(actions, nr_actions=10)
Determine whether the team possessing the ball scored a goal within the next x actions.

Parameters

• actions (pd.DataFrame) – The actions of a game.

• nr_actions (int, default=10 # noqa: DAR103) – Number of actions after the cur-
rent action to consider.

96 Chapter 12. socceraction.atomic.vaep

socceraction, Release 1.5.1

Returns
A dataframe with a column ‘scores’ and a row for each action set to True if a goal was scored by
the team possessing the ball within the next x actions; otherwise False.

Return type
pd.DataFrame

12.2.3 socceraction.atomic.vaep.formula

Implements the formula of the Atomic-VAEP framework.

socceraction.atomic.vaep.formula.defensive_value(actions, scores, concedes)
Compute the defensive value of each action.

VAEP defines the defensive value of an action as the change in conceding probability.

∆𝑃𝑐𝑜𝑛𝑐𝑒𝑑𝑒(𝑎𝑖, 𝑡) = 𝑃 𝑘
𝑐𝑜𝑛𝑐𝑒𝑑𝑒(𝑆𝑖, 𝑡)− 𝑃 𝑘

𝑐𝑜𝑛𝑐𝑒𝑑𝑒(𝑆𝑖−1, 𝑡)

where 𝑃𝑐𝑜𝑛𝑐𝑒𝑑𝑒(𝑆𝑖, 𝑡) is the probability that team 𝑡 which possesses the ball in state 𝑆𝑖 will concede in the next
10 actions.

Parameters

• actions (pd.DataFrame) – SPADL action.

• scores (pd.Series) – The probability of scoring from each corresponding game state.

• concedes (pd.Series) – The probability of conceding from each corresponding game
state.

Returns
The defensive value of each action.

Return type
pd.Series

socceraction.atomic.vaep.formula.offensive_value(actions, scores, concedes)
Compute the offensive value of each action.

VAEP defines the offensive value of an action as the change in scoring probability before and after the action.

∆𝑃𝑠𝑐𝑜𝑟𝑒(𝑎𝑖, 𝑡) = 𝑃 𝑘
𝑠𝑐𝑜𝑟𝑒(𝑆𝑖, 𝑡)− 𝑃 𝑘

𝑠𝑐𝑜𝑟𝑒(𝑆𝑖−1, 𝑡)

where 𝑃𝑠𝑐𝑜𝑟𝑒(𝑆𝑖, 𝑡) is the probability that team 𝑡 which possesses the ball in state 𝑆𝑖 will score in the next 10
actions.

Parameters

• actions (pd.DataFrame) – SPADL action.

• scores (pd.Series) – The probability of scoring from each corresponding game state.

• concedes (pd.Series) – The probability of conceding from each corresponding game
state.

Returns
he ffensive value of each action.

Return type
pd.Series

12.2. Utility functions 97

socceraction, Release 1.5.1

socceraction.atomic.vaep.formula.value(actions, Pscores, Pconcedes)
Compute the offensive, defensive and VAEP value of each action.

The total VAEP value of an action is the difference between that action’s offensive value and defensive value.

𝑉𝑉 𝐴𝐸𝑃 (𝑎𝑖) = ∆𝑃𝑠𝑐𝑜𝑟𝑒(𝑎𝑖, 𝑡)−∆𝑃𝑐𝑜𝑛𝑐𝑒𝑑𝑒(𝑎𝑖, 𝑡)

Parameters

• actions (pd.DataFrame) – SPADL action.

• Pscores (pd.Series) – The probability of scoring from each corresponding game state.

• Pconcedes (pd.Series) – The probability of conceding from each corresponding game
state.

Returns
The ‘offensive_value’, ‘defensive_value’ and ‘vaep_value’ of each action.

Return type
pd.DataFrame

See also:

offensive_value()
The offensive value

defensive_value()
The defensive value

98 Chapter 12. socceraction.atomic.vaep

CHAPTER

THIRTEEN

CONTRIBUTOR GUIDE

This document lays out guidelines and advice for contributing to this project. If you’re thinking of contributing, please
start by reading this document and getting a feel for how contributing to this project works. If you have any questions,
feel free to reach out to either Tom Decroos, or Pieter Robberechts, the primary maintainers.

The guide is split into sections based on the type of contribution you’re thinking of making.

13.1 Bug reports

Bug reports are hugely important! Before you raise one, though, please check through the GitHub issues, both open
and closed, to confirm that the bug hasn’t been reported before.

When filing an issue, make sure to answer these questions:

• Which Python version are you using?

• Which version of socceraction are you using?

• What did you do?

• What did you expect to see?

• What did you see instead?

The best way to get your bug fixed is to provide a test case, and/or steps to reproduce the issue.

13.2 Feature requests

Socceraction is not actively developed. It’s primary use is to enable reproducability of our research. If you believe
there is a feature missing, feel free to raise a feature request on the Issue Tracker, but please do be aware that the
overwhelming likelihood is that your feature request will not be accepted.

13.3 Documentation contributions

Documentation improvements are always welcome! The documentation files live in the docs/ directory of the code-
base. They’re written in reStructuredText, and use Sphinx to generate the full suite of documentation.

You do not have to setup a development environment to make small changes to the docs. Instead, you can edit files
directly on GitHub and suggest changes.

When contributing documentation, please do your best to follow the style of the documentation files. This means a
soft-limit of 79 characters wide in your text files and a semi-formal, yet friendly and approachable, prose style.

99

https://tomdecroos.github.io
https://people.cs.kuleuven.be/~pieter.robberechts/
https://github.com/ML-KULeuven/socceraction/issues
https://github.com/ML-KULeuven/socceraction/issues
http://docutils.sourceforge.net/rst.html
http://sphinx-doc.org/index.html
https://docs.github.com/en/repositories/working-with-files/managing-files/editing-files
https://docs.github.com/en/repositories/working-with-files/managing-files/editing-files

socceraction, Release 1.5.1

When presenting Python code, use single-quoted strings ('hello' instead of "hello").

13.4 Code contributions

If you intend to contribute code, do not feel the need to sit on your contribution until it is perfectly polished and complete.
It helps everyone involved for you to seek feedback as early as you possibly can. Submitting an early, unfinished version
of your contribution for feedback can save you from putting a lot of work into a contribution that is not suitable for the
project.

13.4.1 Setting up your development environment

You need Python 3.7.1+ and the following tools:

• Poetry

• Nox

• nox-poetry

Install the package with development requirements:

$ poetry install

You can now run an interactive Python session.

$ poetry run python

13.4.2 Steps for submitting code

When contributing code, you’ll want to follow this checklist:

1. Fork the repository on GitHub.

2. Run the tests to confirm they all pass on your system. If they don’t, you’ll need to investigate why they fail. If
you’re unable to diagnose this yourself, raise it as a bug report.

3. Write tests that demonstrate your bug or feature. Ensure that they fail.

4. Make your change.

5. Run the entire test suite again, confirming that all tests pass including the ones you just added.

6. Make sure your code follows the code style discussed below.

7. Send a GitHub Pull Request to the main repository’s master branch. GitHub Pull Requests are the expected
method of code collaboration on this project.

100 Chapter 13. Contributor guide

https://python-poetry.org/
https://nox.thea.codes/
https://nox-poetry.readthedocs.io/

socceraction, Release 1.5.1

13.4.3 Testing the project

Download the test data:

$ poetry run python tests/datasets/download.py

Run the full test suite:

$ nox

List the available Nox sessions:

$ nox --list-sessions

You can also run a specific Nox session. For example, invoke the unit test suite like this:

$ nox --session=tests

Unit tests are located in the tests directory, and are written using the pytest testing framework.

13.4.4 Code style

The socceraction codebase uses the PEP 8 code style. In addition, we have a few guidelines:

• Line-length can exceed 79 characters, to 100, when convenient.

• Line-length can exceed 100 characters, when doing otherwise would be terribly inconvenient.

• Always use single-quoted strings (e.g. '#soccer'), unless a single-quote occurs within the string.

To ensure all code conforms to this format. You can format the code using the pre-commit hooks.

$ nox --session=pre-commit

Docstrings are to follow the numpydoc guidelines.

13.4.5 Submitting changes

Open a pull request to submit changes to this project.

Your pull request needs to meet the following guidelines for acceptance:

• The Nox test suite must pass without errors and warnings.

• Include unit tests.

• If your changes add functionality, update the documentation accordingly.

Feel free to submit early, though. We can always iterate on this.

To run linting and code formatting checks before committing your change, you can install pre-commit as a Git hook by
running the following command:

$ nox --session=pre-commit -- install

It is recommended to open an issue before starting work on anything.

13.4. Code contributions 101

https://pytest.readthedocs.io/
https://pep8.org/
https://numpydoc.readthedocs.io/en/latest/format.html
https://github.com/ML-KULeuven/socceraction/pulls

socceraction, Release 1.5.1

102 Chapter 13. Contributor guide

CHAPTER

FOURTEEN

FIRST STEPS

Are you new to soccer event stream data and possession value frameworks? Check out our interactive explainer and
watch Lotte Bransen’s and Jan Van Haaren’s presentation in Friends of Tracking. Once familiar with the basic concepts,
you can move on to the quickstart guide or continue with the hands-on video tutorials of the Friends of Tracking series:

• Valuing actions in soccer (video, slides)
This presentation expands on the content of the introductory presentation by discussing the technicalities
behind the VAEP framework for valuing actions of soccer players as well as the content of the hands-on
video tutorials in more depth.

• Tutorial 1: Run pipeline (video, notebook, notebook on Google Colab)
This tutorial demonstrates the entire pipeline of ingesting the raw Wyscout match event data to producing
ratings for soccer players. This tutorial touches upon the following four topics: downloading and prepro-
cessing the data, valuing game states, valuing actions and rating players.

• Tutorial 2: Generate features (video, notebook, notebook on Google Colab)
This tutorial demonstrates the process of generating features and labels. This tutorial touches upon the
following three topics: exploring the data in the SPADL representation, constructing features to represent
actions and constructing features to represent game states.

• Tutorial 3: Learn models (video, notebook, notebook on Google Colab)
This tutorial demonstrates the process of splitting the dataset into a training set and a test set, learning base-
line models using conservative hyperparameters for the learning algorithm, optimizing the hyperparameters
for the learning algorithm and learning the final models.

• Tutorial 4: Analyze models and results (video, notebook, notebook on Google Colab)
This tutorial demonstrates the process of analyzing the importance of the features that are included in the
trained machine learning models, analyzing the predictions for specific game states, and analyzing the
resulting player ratings.

Note: The video tutorials are based on version 0.2.0 of the socceraction library. If a more recent version of the library
is installed, the code may need to be adapted.

103

https://dtai.cs.kuleuven.be/sports/vaep
https://www.youtube.com/watch?v=w0LX-2UgyXU
https://www.youtube.com/watch?v=xyyZLs_N1F0
https://drive.google.com/open?id=1t-jPgQFjZ7K4HRduaZWexUOMOmc1XR9H1jVWwaZYsOU
https://www.youtube.com/watch?v=0ol_eLLEQ64
https://github.com/SciSports-Labs/fot-valuing-actions/blob/master/notebooks/tutorial1-run-pipeline.ipynb
https://colab.research.google.com/github/SciSports-Labs/fot-valuing-actions/blob/master/notebooks/tutorial1-run-pipeline.ipynb
https://www.youtube.com/watch?v=Ep9wXQgAFaE
https://github.com/SciSports-Labs/fot-valuing-actions/blob/master/notebooks/tutorial2-generate-features.ipynb
https://colab.research.google.com/github/SciSports-Labs/fot-valuing-actions/blob/master/notebooks/tutorial2-generate-features.ipynb
https://www.youtube.com/watch?v=WlORqYIb-Gg
https://github.com/SciSports-Labs/fot-valuing-actions/blob/master/notebooks/tutorial3-learn-models.ipynb
https://colab.research.google.com/github/SciSports-Labs/fot-valuing-actions/blob/master/notebooks/tutorial3-learn-models.ipynb
https://www.youtube.com/watch?v=w9G0z3eGCj8
https://github.com/SciSports-Labs/fot-valuing-actions/blob/master/notebooks/tutorial4-analyze-models-and-results.ipynb
https://colab.research.google.com/github/SciSports-Labs/fot-valuing-actions/blob/master/notebooks/tutorial4-analyze-models-and-results.ipynb

socceraction, Release 1.5.1

104 Chapter 14. First steps

CHAPTER

FIFTEEN

GETTING HELP

Having trouble? We’d like to help!

• Try the FAQ – it’s got answers to many common questions.

• Looking for specific information? Try the genindex or modindex.

• Report bugs in our ticket tracker.

105

https://github.com/ML-KULeuven/socceraction/issues

socceraction, Release 1.5.1

106 Chapter 15. Getting help

CHAPTER

SIXTEEN

CONTRIBUTING

Learn about the development process itself and about how you can contribute in our developer guide.

107

socceraction, Release 1.5.1

108 Chapter 16. Contributing

CHAPTER

SEVENTEEN

RESEARCH

If you make use of this package in your research, please consider citing the following papers.

• Tom Decroos, Lotte Bransen, Jan Van Haaren, and Jesse Davis. “Actions speak louder than goals: Valuing
player actions in soccer.” In Proceedings of the 25th ACM SIGKDD International Conference on Knowledge
Discovery & Data Mining, pp. 1851-1861. 2019.

[pdf, bibtex]

• Maaike Van Roy, Pieter Robberechts, Tom Decroos, and Jesse Davis. “Valuing on-the-ball actions in soccer:
a critical comparison of xT and VAEP.” In Proceedings of the AAAI-20 Workshop on Artifical Intelligence in
Team Sports. AI in Team Sports Organising Committee, 2020.

[pdf, bibtex]

109

http://doi.acm.org/10.1145/3292500.3330758
https://raw.githubusercontent.com/ML-KULeuven/socceraction/master/docs/_static/decroos19.bibtex
https://limo.libis.be/primo-explore/fulldisplay?docid=LIRIAS2913207&context=L&vid=KULeuven&search_scope=ALL_CONTENT&tab=all_content_tab&lang=en_US
https://raw.githubusercontent.com/ML-KULeuven/socceraction/master/docs/_static/vanroy20.bibtex

socceraction, Release 1.5.1

110 Chapter 17. Research

PYTHON MODULE INDEX

s
socceraction.atomic.vaep, 93
socceraction.atomic.vaep.features, 94
socceraction.atomic.vaep.formula, 97
socceraction.atomic.vaep.labels, 96
socceraction.data, 37
socceraction.data.opta, 48
socceraction.data.statsbomb, 41
socceraction.data.wyscout, 53
socceraction.spadl, 63
socceraction.vaep, 75
socceraction.vaep.features, 78
socceraction.vaep.formula, 85
socceraction.vaep.labels, 84
socceraction.xthreat, 69

111

socceraction, Release 1.5.1

112 Python Module Index

INDEX

Symbols
__init__() (socceraction.atomic.vaep.AtomicVAEP

method), 94
__init__() (socceraction.data.opta.OptaLoader

method), 49
__init__() (soccerac-

tion.data.statsbomb.StatsBombLoader
method), 42

__init__() (soccerac-
tion.data.wyscout.PublicWyscoutLoader
method), 57

__init__() (socceraction.data.wyscout.WyscoutLoader
method), 55

__init__() (socceraction.vaep.VAEP method), 76
__init__() (socceraction.xthreat.ExpectedThreat

method), 71

A
action_prob() (in module socceraction.xthreat), 74
actiontype() (in module socceraction.vaep.features),

78
actiontype_onehot() (in module soccerac-

tion.atomic.vaep.features), 94
actiontype_onehot() (in module soccerac-

tion.vaep.features), 78
actiontype_result_onehot() (in module soccerac-

tion.vaep.features), 78
actiontypes (in module soccerac-

tion.atomic.spadl.config), 89
actiontypes (in module socceraction.spadl.config), 66
actiontypes_df() (in module soccerac-

tion.atomic.spadl), 90
actiontypes_df() (in module socceraction.spadl), 68
add_names() (in module socceraction.atomic.spadl), 90
add_names() (in module socceraction.spadl), 68
AtomicSPADLSchema (class in soccerac-

tion.atomic.spadl), 87
AtomicVAEP (class in socceraction.atomic.vaep), 93

B
bodypart() (in module socceraction.vaep.features), 79

bodypart_detailed() (in module soccerac-
tion.vaep.features), 79

bodypart_detailed_onehot() (in module soccerac-
tion.vaep.features), 79

bodypart_onehot() (in module soccerac-
tion.vaep.features), 80

bodyparts (in module soccerac-
tion.atomic.spadl.config), 89

bodyparts (in module socceraction.spadl.config), 66
bodyparts_df() (in module socceraction.atomic.spadl),

91
bodyparts_df() (in module socceraction.spadl), 68

C
competitions() (soccerac-

tion.data.base.EventDataLoader method),
38

competitions() (socceraction.data.opta.OptaLoader
method), 49

competitions() (soccerac-
tion.data.statsbomb.StatsBombLoader
method), 42

competitions() (soccerac-
tion.data.wyscout.PublicWyscoutLoader
method), 57

competitions() (soccerac-
tion.data.wyscout.WyscoutLoader method),
55

CompetitionSchema (class in soccerac-
tion.data.schema), 39

compute_features() (socceraction.vaep.VAEP
method), 76

compute_labels() (socceraction.vaep.VAEP method),
76

concedes() (in module soccerac-
tion.atomic.vaep.labels), 96

concedes() (in module socceraction.vaep.labels), 84
convert_to_actions() (in module soccerac-

tion.spadl.kloppy), 64
convert_to_actions() (in module soccerac-

tion.spadl.opta), 64
convert_to_actions() (in module soccerac-

113

socceraction, Release 1.5.1

tion.spadl.statsbomb), 63
convert_to_actions() (in module soccerac-

tion.spadl.wyscout), 64
convert_to_atomic() (in module soccerac-

tion.atomic.spadl), 87

D
defensive_value() (in module soccerac-

tion.atomic.vaep.formula), 97
defensive_value() (in module soccerac-

tion.vaep.formula), 85
direction() (in module soccerac-

tion.atomic.vaep.features), 94

E
endlocation() (in module socceraction.vaep.features),

80
endpolar() (in module socceraction.vaep.features), 80
eps (socceraction.xthreat.ExpectedThreat attribute), 69
EventDataLoader (class in socceraction.data.base), 37
events() (socceraction.data.base.EventDataLoader

method), 38
events() (socceraction.data.opta.OptaLoader method),

49
events() (socceraction.data.statsbomb.StatsBombLoader

method), 43
events() (socceraction.data.wyscout.PublicWyscoutLoader

method), 57
events() (socceraction.data.wyscout.WyscoutLoader

method), 55
EventSchema (class in socceraction.data.schema), 41
ExpectedThreat (class in socceraction.xthreat), 69

F
feature_column_names() (in module soccerac-

tion.atomic.vaep.features), 94
feature_column_names() (in module soccerac-

tion.vaep.features), 80
field_length (in module soccerac-

tion.atomic.spadl.config), 89
field_length (in module socceraction.spadl.config), 66
field_width (in module soccerac-

tion.atomic.spadl.config), 89
field_width (in module socceraction.spadl.config), 66
fit() (socceraction.vaep.VAEP method), 77
fit() (socceraction.xthreat.ExpectedThreat method), 71

G
games() (socceraction.data.base.EventDataLoader

method), 38
games() (socceraction.data.opta.OptaLoader method),

50
games() (socceraction.data.statsbomb.StatsBombLoader

method), 43

games() (socceraction.data.wyscout.PublicWyscoutLoader
method), 58

games() (socceraction.data.wyscout.WyscoutLoader
method), 55

GameSchema (class in socceraction.data.schema), 40
gamestates() (in module socceraction.vaep.features),

81
get_move_actions() (in module socceraction.xthreat),

73
get_successful_move_actions() (in module soccer-

action.xthreat), 73
goal_from_shot() (in module soccerac-

tion.atomic.vaep.labels), 96
goal_from_shot() (in module soccerac-

tion.vaep.labels), 85
goalscore() (in module soccerac-

tion.atomic.vaep.features), 95
goalscore() (in module socceraction.vaep.features), 81

H
heatmaps (socceraction.xthreat.ExpectedThreat at-

tribute), 69

I
interpolator() (socceraction.xthreat.ExpectedThreat

method), 71

L
l (socceraction.xthreat.ExpectedThreat attribute), 69
load_model() (in module socceraction.xthreat), 72
location() (in module soccerac-

tion.atomic.vaep.features), 95

M
module

socceraction.atomic.vaep, 93
socceraction.atomic.vaep.features, 94
socceraction.atomic.vaep.formula, 97
socceraction.atomic.vaep.labels, 96
socceraction.data, 37
socceraction.data.opta, 48
socceraction.data.statsbomb, 41
socceraction.data.wyscout, 53
socceraction.spadl, 63
socceraction.vaep, 75
socceraction.vaep.features, 78
socceraction.vaep.formula, 85
socceraction.vaep.labels, 84
socceraction.xthreat, 69

move_prob_matrix (soccerac-
tion.xthreat.ExpectedThreat attribute), 70

move_transition_matrix() (in module soccerac-
tion.xthreat), 74

114 Index

socceraction, Release 1.5.1

movement() (in module socceraction.vaep.features), 81
movement_polar() (in module soccerac-

tion.atomic.vaep.features), 95

O
offensive_value() (in module soccerac-

tion.atomic.vaep.formula), 97
offensive_value() (in module soccerac-

tion.vaep.formula), 86
OptaCompetitionSchema (class in soccerac-

tion.data.opta), 51
OptaEventSchema (class in socceraction.data.opta), 52
OptaGameSchema (class in socceraction.data.opta), 52
OptaLoader (class in socceraction.data.opta), 48
OptaPlayerSchema (class in socceraction.data.opta), 51
OptaTeamSchema (class in socceraction.data.opta), 51

P
play_left_to_right() (in module soccerac-

tion.atomic.spadl), 90
play_left_to_right() (in module soccerac-

tion.atomic.vaep.features), 95
play_left_to_right() (in module soccerac-

tion.spadl), 67
play_left_to_right() (in module soccerac-

tion.vaep.features), 81
player_possession_time() (in module soccerac-

tion.vaep.features), 82
players() (socceraction.data.base.EventDataLoader

method), 39
players() (socceraction.data.opta.OptaLoader

method), 50
players() (socceraction.data.statsbomb.StatsBombLoader

method), 43
players() (socceraction.data.wyscout.PublicWyscoutLoader

method), 58
players() (socceraction.data.wyscout.WyscoutLoader

method), 56
PlayerSchema (class in socceraction.data.schema), 40
polar() (in module socceraction.atomic.vaep.features),

96
PublicWyscoutLoader (class in soccerac-

tion.data.wyscout), 56

R
rate() (socceraction.vaep.VAEP method), 77
rate() (socceraction.xthreat.ExpectedThreat method),

71
result() (in module socceraction.vaep.features), 82
result_onehot() (in module soccerac-

tion.vaep.features), 82
results (in module socceraction.spadl.config), 67
results_df() (in module socceraction.spadl), 68

S
save_model() (socceraction.xthreat.ExpectedThreat

method), 72
score() (socceraction.vaep.VAEP method), 78
scores() (in module socceraction.atomic.vaep.labels),

96
scores() (in module socceraction.vaep.labels), 85
scoring_prob() (in module socceraction.xthreat), 73
scoring_prob_matrix (soccerac-

tion.xthreat.ExpectedThreat attribute), 70
shot_prob_matrix (soccerac-

tion.xthreat.ExpectedThreat attribute), 70
simple() (in module socceraction.vaep.features), 82
socceraction.atomic.vaep

module, 93
socceraction.atomic.vaep.features

module, 94
socceraction.atomic.vaep.formula

module, 97
socceraction.atomic.vaep.labels

module, 96
socceraction.data

module, 37
socceraction.data.opta

module, 48
socceraction.data.statsbomb

module, 41
socceraction.data.wyscout

module, 53
socceraction.spadl

module, 63
socceraction.vaep

module, 75
socceraction.vaep.features

module, 78
socceraction.vaep.formula

module, 85
socceraction.vaep.labels

module, 84
socceraction.xthreat

module, 69
space_delta() (in module socceraction.vaep.features),

83
SPADLSchema (class in socceraction.spadl), 65
speed() (in module socceraction.vaep.features), 83
startlocation() (in module soccerac-

tion.vaep.features), 83
startpolar() (in module socceraction.vaep.features),

83
StatsBombCompetitionSchema (class in soccerac-

tion.data.statsbomb), 44
StatsBombEventSchema (class in soccerac-

tion.data.statsbomb), 46

Index 115

socceraction, Release 1.5.1

StatsBombGameSchema (class in soccerac-
tion.data.statsbomb), 45

StatsBombLoader (class in soccerac-
tion.data.statsbomb), 42

StatsBombPlayerSchema (class in soccerac-
tion.data.statsbomb), 45

StatsBombTeamSchema (class in soccerac-
tion.data.statsbomb), 45

T
team() (in module socceraction.vaep.features), 83
teams() (socceraction.data.base.EventDataLoader

method), 39
teams() (socceraction.data.opta.OptaLoader method),

50
teams() (socceraction.data.statsbomb.StatsBombLoader

method), 44
teams() (socceraction.data.wyscout.PublicWyscoutLoader

method), 58
teams() (socceraction.data.wyscout.WyscoutLoader

method), 56
TeamSchema (class in socceraction.data.schema), 40
time() (in module socceraction.vaep.features), 84
time_delta() (in module socceraction.vaep.features),

84
transition_matrix (soccerac-

tion.xthreat.ExpectedThreat attribute), 70

V
VAEP (class in socceraction.vaep), 75
value() (in module socceraction.atomic.vaep.formula),

97
value() (in module socceraction.vaep.formula), 86

W
w (socceraction.xthreat.ExpectedThreat attribute), 69
WyscoutCompetitionSchema (class in soccerac-

tion.data.wyscout), 59
WyscoutEventSchema (class in soccerac-

tion.data.wyscout), 61
WyscoutGameSchema (class in soccerac-

tion.data.wyscout), 60
WyscoutLoader (class in socceraction.data.wyscout), 54
WyscoutPlayerSchema (class in soccerac-

tion.data.wyscout), 60
WyscoutTeamSchema (class in soccerac-

tion.data.wyscout), 59

X
xT (socceraction.xthreat.ExpectedThreat attribute), 70

116 Index

	Quickstart
	Installation
	Loading event stream data
	Converting to SPADL actions
	Valuing actions

	Installation
	Install Python
	Install socceraction
	Installing an official release with pip
	Installing the development version

	Verifying

	Loading data
	Loading data with socceraction
	Loading StatsBomb data
	Setup
	Connecting to a data store
	Open Data repository
	StatsBomb API
	Local directory

	Loading data
	StatsBombLoader.competitions()
	StatsBombLoader.games()
	StatsBombLoader.teams()
	StatsBombLoader.players()
	StatsBombLoader.events()

	Loading Wyscout data
	Connecting to a data store
	Wyscout API
	Local directory
	Soccer logs dataset

	Loading data

	Loading Opta data
	Connecting to a data store
	Generic setup
	Opta F7 and F24 XML feeds
	Opta F1, F9 and F24 JSON feeds
	StatsPerform MA1 and MA3 JSON feeds
	WhoScored

	Loading data

	Loading data with kloppy

	Data representation
	SPADL
	Definitions
	Example

	Atomic-SPADL
	Definitions
	Example

	Valuing actions
	General idea
	Implemented frameworks
	Expected Threat (xT)
	VAEP
	Atomic-VAEP

	FAQ
	socceraction.data
	socceraction.data.base
	Serializers
	socceraction.data.base.EventDataLoader
	socceraction.data.base.EventDataLoader.competitions
	socceraction.data.base.EventDataLoader.events
	socceraction.data.base.EventDataLoader.games
	socceraction.data.base.EventDataLoader.players
	socceraction.data.base.EventDataLoader.teams

	Schema
	socceraction.data.schema.CompetitionSchema
	socceraction.data.schema.TeamSchema
	socceraction.data.schema.PlayerSchema
	socceraction.data.schema.GameSchema
	socceraction.data.schema.EventSchema

	socceraction.data.statsbomb
	Serializers
	socceraction.data.statsbomb.StatsBombLoader
	socceraction.data.statsbomb.StatsBombLoader.__init__
	socceraction.data.statsbomb.StatsBombLoader.competitions
	socceraction.data.statsbomb.StatsBombLoader.events
	socceraction.data.statsbomb.StatsBombLoader.games
	socceraction.data.statsbomb.StatsBombLoader.players
	socceraction.data.statsbomb.StatsBombLoader.teams

	Schema
	socceraction.data.statsbomb.StatsBombCompetitionSchema
	socceraction.data.statsbomb.StatsBombTeamSchema
	socceraction.data.statsbomb.StatsBombPlayerSchema
	socceraction.data.statsbomb.StatsBombGameSchema
	socceraction.data.statsbomb.StatsBombEventSchema

	socceraction.data.opta
	Serializers
	socceraction.data.opta.OptaLoader
	socceraction.data.opta.OptaLoader.__init__
	socceraction.data.opta.OptaLoader.competitions
	socceraction.data.opta.OptaLoader.events
	socceraction.data.opta.OptaLoader.games
	socceraction.data.opta.OptaLoader.players
	socceraction.data.opta.OptaLoader.teams

	Schema
	socceraction.data.opta.OptaCompetitionSchema
	socceraction.data.opta.OptaTeamSchema
	socceraction.data.opta.OptaPlayerSchema
	socceraction.data.opta.OptaGameSchema
	socceraction.data.opta.OptaEventSchema

	socceraction.data.wyscout
	Serializers
	socceraction.data.wyscout.WyscoutLoader
	socceraction.data.wyscout.WyscoutLoader.__init__
	socceraction.data.wyscout.WyscoutLoader.competitions
	socceraction.data.wyscout.WyscoutLoader.events
	socceraction.data.wyscout.WyscoutLoader.games
	socceraction.data.wyscout.WyscoutLoader.players
	socceraction.data.wyscout.WyscoutLoader.teams

	socceraction.data.wyscout.PublicWyscoutLoader
	socceraction.data.wyscout.PublicWyscoutLoader.__init__
	socceraction.data.wyscout.PublicWyscoutLoader.competitions
	socceraction.data.wyscout.PublicWyscoutLoader.events
	socceraction.data.wyscout.PublicWyscoutLoader.games
	socceraction.data.wyscout.PublicWyscoutLoader.players
	socceraction.data.wyscout.PublicWyscoutLoader.teams

	Schema
	socceraction.data.wyscout.WyscoutCompetitionSchema
	socceraction.data.wyscout.WyscoutTeamSchema
	socceraction.data.wyscout.WyscoutPlayerSchema
	socceraction.data.wyscout.WyscoutGameSchema
	socceraction.data.wyscout.WyscoutEventSchema

	socceraction.spadl
	Converters
	socceraction.spadl.statsbomb.convert_to_actions
	socceraction.spadl.opta.convert_to_actions
	socceraction.spadl.wyscout.convert_to_actions
	socceraction.spadl.kloppy.convert_to_actions

	Schema
	socceraction.spadl.SPADLSchema

	Config
	socceraction.spadl.config.field_length
	socceraction.spadl.config.field_width
	socceraction.spadl.config.actiontypes
	socceraction.spadl.config.bodyparts
	socceraction.spadl.config.results

	Utility functions
	socceraction.spadl.play_left_to_right
	socceraction.spadl.add_names
	socceraction.spadl.actiontypes_df
	socceraction.spadl.bodyparts_df
	socceraction.spadl.results_df

	socceraction.xthreat
	Model
	socceraction.xthreat.ExpectedThreat
	socceraction.xthreat.ExpectedThreat.__init__
	socceraction.xthreat.ExpectedThreat.fit
	socceraction.xthreat.ExpectedThreat.interpolator
	socceraction.xthreat.ExpectedThreat.rate
	socceraction.xthreat.ExpectedThreat.save_model

	Utility functions
	socceraction.xthreat.load_model
	socceraction.xthreat.get_move_actions
	socceraction.xthreat.get_successful_move_actions
	socceraction.xthreat.scoring_prob
	socceraction.xthreat.action_prob
	socceraction.xthreat.move_transition_matrix

	socceraction.vaep
	Model
	socceraction.vaep.VAEP
	socceraction.vaep.VAEP.__init__
	socceraction.vaep.VAEP.compute_features
	socceraction.vaep.VAEP.compute_labels
	socceraction.vaep.VAEP.fit
	socceraction.vaep.VAEP.rate
	socceraction.vaep.VAEP.score

	Utility functions
	socceraction.vaep.features
	socceraction.vaep.labels
	socceraction.vaep.formula

	socceraction.atomic.spadl
	Converters
	socceraction.atomic.spadl.convert_to_atomic

	Schema
	socceraction.atomic.spadl.AtomicSPADLSchema

	Config
	socceraction.atomic.spadl.config.field_length
	socceraction.atomic.spadl.config.field_width
	socceraction.atomic.spadl.config.actiontypes
	socceraction.atomic.spadl.config.bodyparts

	Utility functions
	socceraction.atomic.spadl.play_left_to_right
	socceraction.atomic.spadl.add_names
	socceraction.atomic.spadl.actiontypes_df
	socceraction.atomic.spadl.bodyparts_df

	socceraction.atomic.vaep
	Model
	socceraction.atomic.vaep.AtomicVAEP
	socceraction.atomic.vaep.AtomicVAEP.__init__

	Utility functions
	socceraction.atomic.vaep.features
	socceraction.atomic.vaep.labels
	socceraction.atomic.vaep.formula

	Contributor guide
	Bug reports
	Feature requests
	Documentation contributions
	Code contributions
	Setting up your development environment
	Steps for submitting code
	Testing the project
	Code style
	Submitting changes

	First steps
	Getting help
	Contributing
	Research
	Python Module Index
	Index

